省エネ大賞 中小企業受賞案件に見る

キラリとかがやく! 製品・ビジネスモデル

第3回

再生エネルギー併用型デシカントメガクール空調機

株式会社アースクリーン東北

● 2019 年度省エネ大賞省エネルギーセンター会長賞

アースクリーン東北は, デシカント式除湿技術と間接気化冷却のメガクール技術を統合。 さらに太陽熱集熱器などで 作られた40~80℃の温水を利用する、環境に優しく省エネ性に優れた空調システムを住宅用に開発。除湿冷房で の COP6.9, 加湿暖房での COP21.8 を実現した。 (編集部)

1. 開発の背景及び目的、開発プロセス

アースクリーン東北は、宮城県仙台市にて環境制御機器 や空調設備機器,省エネ関連機器などを手掛けている企業。 2019 年度省エネ大賞省エネルギーセンター会長賞を受賞 した「再生エネルギー併用型デシカントメガクール空調機」 は、同社のデシカント式除湿技術と、間接気化冷却のメガ クール技術とを統合したノンフロンで環境に優しく. かつ 省エネ性に優れた住宅用空調システムである。

空調分野において潜熱と顕熱とを分離制御する空調シス テムに注目度が高まっている中、同社では蓄積してきたデ シカント式除湿の技術と、間接気化冷却のメガクール技術 とを統合。潜熱である湿度と顕熱である温度とを分離制御 する空調システムを大型施設向けに導入している。

同社が得意とするデシカントによる潜熱処理は、回転す るローターの半分の面積に処理空気を流して空気中の水分 をローターに吸着(空気の除湿), 半分の面積に温風(再 生空気)を流してローターの水分を脱着し、空気の除湿を 連続的に行う方法。再生の空気を温める熱源があれば送風 のみで除湿ができるため省エネ性が高い。ただ、デシカン トによる除湿過程が等エンタルピー変化であり、除湿後に 空気が高温になるため降温処理(顕熱処理)に大きなエネ ルギーを要する。この課題に対し、同社が開発した冷媒ガ スを一切用いずに少ないエネルギーで顕熱処理が可能な間 接気化式冷却器「メガクール」を用いることで対応した。

大型施設への導入については、従来のデシカント式では 除湿ローターの再生に100℃前後の温風が必要となるが、

大型施設ではボイラーや設備機器などからの高温排熱を潤 沢に利用できる環境があることがメリットになる。

一方、住宅においては、ヒートポンプを併用するなどし て温風を作ったり、除湿の効率を上げたりする必要があり、 このことにエネルギーを消費するため同システムの適用が 難しかった。しかし、近年は住宅用の太陽集熱器や燃料電 池, 高効率給湯器などが普及し40~80℃程度の温水利用 が可能になってきた。そうした中、同社が開発した除湿剤 「スポンジ酸化チタン」を利用するとこの温度帯でデシカ ント再生ができ、住宅でも再生のための熱を特別作らず送 風のみで除湿が可能になる。また、住宅用とする際に除湿 冷房を行う期間は一般的に夏季のみであるが、冬季でも本 システムを加湿暖房機として使えるよう暖房については夏 季にデシカントを再生するのに使っていた熱源を給気を温 める熱源として利用するといった工夫も行われた。

2. 製品等の詳細

1) システムの概要

「再牛エネルギー併用型デシカントメガクール空調機」 は、デシカントメガクールに太陽熱集熱器、ハイブリッド 給湯器、燃料電池などで温められた温水を供給し、デシカ ントの再生や暖房に利用する。夏季は、デシカントの除湿 で温まった空気をメガクールで冷却し屋内に給気。冬季は、 温水をデシカントの処理側に回して暖房に利用し、加湿は メガクールのウエット・チャネルの空気を給気に混ぜて行 う (図-1.2)。

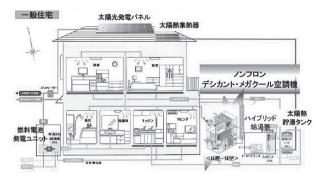


図-1 住宅用「デシカントメガクール」の導入例

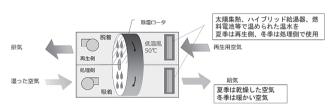


図-2 デシカント除湿ユニット部の仕組み

2) 除湿剤「スポンジ酸化チタン」

住宅で得られる温水は、給湯や床暖で使用される40~ 80℃程度で、代表的な除湿剤(シリカゲル材、ゼオライ ト材など)の再生に必要な80~140℃以上の熱といった 要件を満たさず、デシカント除湿ローターの再生には一般 的に温度が低すぎて利用できない。しかし、同社が開発し た除湿剤「スポンジ酸化チタン」は40~60℃程度の熱で 再生可能であり、住宅で得られる低温の熱を有効利用でき る。

3) メガクール冷却機

メガクール冷却機の基本原理は、気化現象を生じさせる ためのウエット・チャネルと被冷却空気を通すドライ・ チャネルとを隔壁を介して完全に分離し、間接的に熱交換 させることで加湿することなく空気を冷却するといったも の。**図-3**, **4**に示すように, 隔壁で仕切られた Dry 側流路 と Wet 側流路を多数積層した構造。Wet 側の隔壁面は水 を浸した湿潤壁で、Dry 側に高温空気を流すと Wet 側の 気化現象により Dry 側の熱を奪う。Dry 側と Wet 側は完 全に隔てているため、湿度の移行がなく温度だけを冷却す る。メガクールに使用する水量は気化蒸発する分の水量相 当で良いため、水冷式の冷却器とは比べ物にならない少な い水量で冷却する。このようにして、デシカントで除湿し

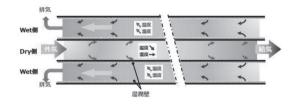


図-3 メガクールの構造と熱移動のイメージ

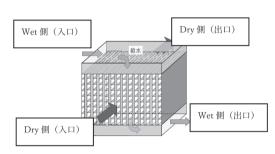


図-4 メガクールの冷却モジュール

た空気を加湿することなく屋内に除湿冷却した空気を供給 する。

3. 技術的特徵

(先進性・独創性)

独自開発の除湿剤「スポンジ酸化チタン」を採用するこ とで住宅におけるデシカント方式の除湿を可能とした。

デシカント除湿機, メガクール冷却機共に冷媒ガスを一 切使用しない。

(省エネルギー性)

太陽集熱などで40~80℃の温水をデシカント除湿機で 利用できる場合, 除湿冷房時, 加湿暖房時ともに, 送風と 制御盤、デシカントローターの回転動力に関わる電力と少 量の水しか使用しない。

デシカント除湿機の熱源には, 通常, 過剰に蓄えられて いる貯湯タンクなどの熱を利用する。特に太陽熱を熱源と する場合、燃料費はほぼゼロとなる。また、ハイブリッド 給湯器や燃料電池の排熱を利用する場合においても、通常 は蓄熱用のタンクを備えており給湯で使用する以上の熱が 蓄えられているが、この熱を排熱させず、除湿や暖房で有 効活用できる。

除湿冷房でこの熱を使う場合、デシカントを再生した温

かい空気は屋外に排気されるため、 給気側への熱量の持ち 込みは少なく、給気空気のエンタルピー(全熱)変化は、 主にメガクールでの冷却によるものとなる。一方, 加湿暖 房でこの熱を使う場合、デシカント部で給気空気にこの熱 が伝わり、メガクールでの加湿も加わるため、 給気空気の エンタルピー変化は非常に大きくなる。そのため、除湿冷 房での COP は 6.9 と高く、加湿暖房では 21.8 と非常に大 きな値となり省エネ性の高さが示される。

(省資源性・リサイクル性)

デシカント除湿部の熱源に自然エネルギーを利用した場 合、化石燃料を使わない。コージェネでの熱を利用する場 合は給水などに使わず余った熱を使うので、このシステム のために化石燃料を使わない。メガクールで使用する水も 水冷式に比べ非常に少ない。

(市場性・経済性)

一般家庭の空調に対して、太陽熱を利用したデシカント 空調システムとの組み合わせにより、夏季の冷房・除湿に よる消費電力を50%以上削減できる可能性を有している。 また、日本のみならず海外での需要も見込める。

(環境性・安全性)

コンプレッサー不要の空調システムのため、 ノンフロン でCO。の排出量が極めて少ない。本システムから排気さ れる空気の温度は低く, ヒートアイランド問題解決にも寄 与する。冷媒ガスを使わず、ファンと冷却モジュールのシ ンプルな構造のため安全。

[事業者概要]

名 称:株式会社アースクリーン東北

所在地:〒984-0038 宮城県仙台市若林区伊在2丁目14-17

担 当:代表取締役 今野 賢一

連絡先:022-288-2888

省エネ大賞受賞者のコメント

株式会社アースクリーン東北

当社は「潜熱革命」を理念として地球環境への貢献に取 り組んでおり、より省エネ性が高く、環境負荷軽減を追求 した空調機の開発に邁進しています。

会社の歴史を振り返りますと、1989年、当時世の中に ほとんど知られていなかった、ノウハウも何もないデシカ ント空調機の開発からスタートし, 東北大学の内田聡博士 (現東京大学特任教授) との共同開発によって、2004年 に4年の歳月をかけて低温再生に特化した全く新しい除湿 剤「スポンジ酸化チタン」の開発に成功しました。この発 明で、当時の除湿剤は再生に100℃程度の温風が必要で したが、40℃程度の低温でも可能となり、太陽熱などの 自然エネルギーで作れる温水でのデシカント(除湿)空調 が実現可能となりました。この完成と合わせ本格的なゼロ エネルギー空調に挑み, 水の気化熱を間接的に利用し, 加 湿せずに冷房する「メガクール」の開発を進めました。

2013年頃には、これらを一体とした、潜熱・顕熱分離 方式のデシカント+メガクール空調機の認知が徐々に広が

り、自然エネルギーや未利用排熱を利用した「換気、空気 清浄、冷房、暖房、除湿、加湿、除菌、消臭」の八つの効 果をもたらす空調機として大型施設等へ導入されるように なりました。

また,住宅でも使える空調機とすることを実現するため, 東北大学、東北工業大学様等との共同研究開発で実証試験 を続けました。その研究や性能で2019年度省エネ大賞省 エネルギーセンター会長賞を頂き、2022年度環境省主導 の ETV (実証番号 140-2203) で気候変動対策技術領域 での取り組みとして承認頂けるまでとなり、大変な励みと なりました。

試行錯誤の繰り返しで大変なことばかりでしたが、デシ カントメガクール空調機の普及に向けて、社員一同、空調 業界に大きな変革をおこすという大きな夢を持ち、日々楽 しみながら、ゼロエネルギー空調の実現に向けて挑み続け ております。