付表-1 エネルギー単位熱量

エネルギー			単位発熱量	備考		
	昼間電力		9.97 MJ/kWh			
電力	夜間電力		9.28 MJ/kWh			
	上記以外の	電力	9.76 MJ/kWh			
	自家発電		事業者の実測値(又は 9.76 MJ/kWh)			
	オイル		36.7 MJ/L			
		軽油	38. 2 MJ/L			
		A重油	39.1 MJ/L			
		B•C重油	41.7 MJ/L	* 建物で使用される頻度は少ない		
燃料	都市ガス	13A	46.1 MJ/m3	ガス会社ごとの単位発熱量とする。		
		12A	41.9 MJ/m3			
		6A	29.3 MJ/m3			
		6B	20.9 MJ/m3			
		5C	18.8 MJ/m3			
	液化石油ガス	LPG	50.2 MJ/kg			
	蒸気(産業用を除く)		1.36 MJ/MJ	熱供給事業者・供給区域ごとの単位		
熱	温水		1.36 MJ/MJ	発熱量を用いてもよい。		
	冷 水		1.36 MJ/MJ			

出典;「省エネ法」省令別表を 参考に作成しました。

付表―2 エネルギー単位換算表

A 換算表

1 エネルギー・仕事量・熱量など

kJ	kcal	W·h	kgf·m	
1	0.2388	0.2778	102	1J=1NX1m
4.187	1	1.163	426.9	
3.6	0.860	1	367.1	

2 圧力

 //					
kPa	kgf∕c m i̇́	mmAq	mmHg		
1	1.02X10 ⁻²	102	7.50		
98.07	1	10000	735.6		
9.807X10 ⁻³	10 ⁻⁴	1	7.356X10 ⁻²		
0.1333	1.36X10 ⁻³	13.6	1		

 $1 \text{ atm} = 101.3 \text{kPa} = 1.033 \text{kgf/cm}^2 = 10.33 \text{mAq}$

3 熱伝導率

W/(m·℃) W/(m·K)	kcal/m·h·℃			
1	0.860			
1.163	1			

4 熱伝達率·熱通過率

W/(m'⋅°C) W/(m'⋅K)	kcal∕m³·h·°C				
1	0.860				
1.163	1				

 $1Pa = 1N / m^2$

5 粘度,動粘度

粘 度: 1cP(センチホ°ワス*)=10⁻³Pa·s=1mPa·s=1.02X10⁻⁴kgf·s/m²

動粘度: $1 cSt(センチストークス) = 10^{-6} m^2/s = 1 m m^2/s$

6 その他

1USRT(米国冷凍トン)=3024kcal/h=12.66MJ/h=3.517kW 1JRT (日本冷凍トン)=3320kcal/h=13.90MJ/h=3.862kW

B 10の整数乗倍の単位を作るための接頭語(抜粋)

倍数	10 ⁻¹²	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10 ⁻¹	10 ¹	10 ²	10 ³	10 ⁶	10 ⁹	10 ¹²
接頭語	ピコ	ナノ	マイクロ	ξIJ	センチ	デシ	デカ	ヘクト	キ ロ	ሃ 力້	キ゛カ゛	テラ
記号	р	n	μ	m	С	d	da	h	k	М	G	Т

出典;冷凍空調技術(空調編)日本冷凍空調学会