4. 3 省エネチューニング事例解説

4.3.1チューニング事例シート

作成したチューニング事例は、主として平成 $15\sim16$ 年に実施した「チューニング効果実施事例」のデータに依ったものです。一部の項目については、(財)省エネルギーセンター主催「省エネルギー実施優秀事例発表会」その他のデータを使用しています。事例シートの各項目の説明を表 4.3.1 に、また作成したチューニング事例項目を、表 4.3.2 に示します。

表 4.3.1 事例シートの 各記載項目

項目名	内容
チューニング項目	チューニング項目名
対象	空調設備、衛生設備等のチューニングの対象となる設備
建物概要	用途, 所在地, 延床面積等の建物概要
チューニング内容	設定条件など、チューニング実施の際の条件
実施期間	チューニングを実施した時期
結果	チューニング前後のデータ・原則としてグラフにて表示
評価・解説	チューニングによる効果を対象・範囲・低減値を明示して記述

表 4.3.2 チューニング 事例項目

分類		No	チューニング項目	事例	場所	出典
負荷の低減		空調-1	屋内温湿度条件の緩和 (夏期)	H15 01ビル	神奈川県	*
		空調-2		H17 02 ビル	神奈川県	*
		空調-3	屋内温湿度条件の緩和 (冬期)	H15 03ビル	東京都	*
		空調-4	外気量の削減	H16 04ビル	東京都	*
		空調-5	C02 濃度による制御	H16 05ビル	東京都	*
		空調-6	起動時の外気導入制御	H15 06ビル	東京都	*
		空調-7	外気冷房	H15 07ビル	東京都	*
		空調-8	再熱制御システムの取り止め	H15 08ビル	東京都	*
機器の効率運転	熱	空調-9	台数制御運転方式の改善	H16 09ビル	東京都	*
	源	空調-10	燃焼機の空気比調整	10ビル	広島県	
		空調-11	冷水出口温度設定の変更	H16 11ビル	東京都	*
		空調-12		H17 12ビル	東京都	*
		空調-13		H17 13ビル	神奈川県	*
		空調-14	温水出口温度設定の変更	H16 14ビル	神奈川県	*
		空調-15	冷却水温度の設定値変更	H15 15ビル	東京都	*
		空調-16	効率低下機器の整備・修繕・交換	16ビル	東京都	0
		空調-17		17ビル	東京都	0
搬送動力の節減	ポ	空調-18	ポンプの変流量方式の改善	H15 18ビル	東京都	*
	ン	空調-19		19ビル	愛知県	0
	プ	空調-20		H15 20ビル	東京都	*
		空調-21	冷却水量変更	H15 21ビル	東京都	*
	空	空調-22	VAV方式の送風温度の変更	H16 22ビル	神奈川県	*
	調					
	機					
運用対応	空	空調-23	空調設備の間欠運転	H16 23ビル	神奈川県	*
	調	空調-24	ナイトパージ	H15 24ビル	神奈川県	*
	换	空調-25	間欠運転	H15 25ビル	神奈川県	*
	気					
その他	給	衛生-1	給湯時間と範囲を短縮・制限する	26ビル	福岡県	0
	湯	衛生-2	給湯温度を低くする	27ビル	東京都	
		衛生-3	貯湯槽の運転台数の削減	28ビル	福岡県	0
	照明	電気 -1	タイマー・スイッチによる自動点滅	29ビル	兵庫県	
	1	電気 -2	個別スイッチ・人感センサによる点滅	30ビル	神奈川県	0
	1		<u>I</u>	l .		

出典の凡例※: 当委員会によるチューニング効果実施事例。 ○: (財)省エネルギーセンター,省エネルギー実施優秀事例発表会より。 □: その他のデータによる

	省エネチューニング事例シート
対象	空調設備 空調・1
<u></u>	屋内温湿度条件の緩和(夏期)
建物概要	所在地:神奈川県 延床面積:119,480m2 建物規模:B2F~34F 用途:複合ビル 竣工:1994年3月 熱源設備:DHC
対象設備	空調機
チューニング内容	屋内の温度設定を変更した。 2002 年(平成 14 年) 室内温度 26℃、湿度 50% 2003 年(平成 15 年) 室内温度 27℃、湿度 50%
実施期間	2002年~2003年 (サロナドウンナ 0、10叶ナマの東 1 / A - A - A - A - A - A - A - A - A - A
結果	休日を除いた 9~18 時までの受入冷水熱量と外気エンタルピの関係を近似直線の回帰直線式からエネルギー削減量を試算すると、平均外気エンタルビ条件(65.2kJ/kg)では、室内設定温度 2 8 ℃時の受入冷熱量は 2 6 ℃時の場合に比べ約 1,300MJ/h(約 7%)削減されたものと推定される。 30,000 - 平成 1 4 年度 - 一線形 (平成 1 5 年度) - 線形 (平成 1 5 年度) - 線形 (平成 1 5 年度) - 10,000 10,000 20,000 40,000 60,000 80,000 100,000 外気エンタルピ (kJ/kg)
評価・解説	屋内の夏期設定温度を 1℃上げる事により、ビル全体の冷水使用熱量を 7%削減 した事例

V11 252	空調設備	ェネチューニング事例シート 	
対象 チューニング		空調-:	<u> </u>
ナューニンク 項目	屋内温湿度条件の緩	₹/H\友州/	
^{吳曰} ———— 建物概要	所在地:神奈川県	 延床面積:119,480n	
生物似女	用途:複合ビル	竣工:1994年3月	112 年初/死侯 · D21 - 541
	熱源設備:DHC	·	
対象設備	空調機		
チューニング			引温度が 28℃設定だった平成 1 7
内容			熱供給センターから供給された片
	熱量を、熱源受入施	面設の冷水熱量計の計測デー。	タで解析した。
実施期間	2004年 ~2005年		
結果	30,000		
	25,000		
		49.31x - 3650.7	
	F	$R^2 = 0.7332$	
	20,000		
	20,000		
	[H/]		
	15,000		
	(H/介W) 画 (H/介W) 画 (Windows) 15,000		
	皇		
		0,000	y = 366.04x - 6642.7
	10,000	3 4 0	$R^2 = 0.7321$
	5,000	<u> </u>	平成16年(室温設定26℃)
		○ z	平成17年(室温設定28°C)
	40 45	50 55 60 6	55 70 75 80 85
	40 43	が気エンタルピ(k	
		室温設定を2℃上げることによる消	i 書熱量の変化
			· ℃のものに比べて受入冷熱量か

対象	空調設備 空調-3
チューニング項目	屋内温湿度条件の緩和(冬期)
建物概要	所在地:東京都 延床面積:17,800 m2 建物規模:B2F~13F 用途:事務所 竣工:1997 年 11 月 熱源設備:ガス焚冷温水機
対象設備	熱源設備
チューニング内容	冬期の温度条件を 24~25℃から 23~24℃へと 1℃変更し、省エネルギー効果を確認した。
実施期間	2002年(平成 14年)~2003年(平成 15年)
結果	2002年12月~2003年1月 2003年12月~2004年1月 線形 (2003年12月~2004年1月) 線形 (2003年12月~2004年1月) 線形 (2003年12月~2004年1月) 線形 (2003年12月~2004年1月) 15,000 5,000 5,000 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 外気温度(で) 平均外気温度基準消費エネルギー量
	20
	0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 外気絶対湿度(kg/kg')
	外気絶対温度基準加湿量変化
	内部発熱が大きいため、エネルギー量の変化はなかったものの、屋内温度を低 下させたことにより、加湿用給水量が削減できた。
評価・解説	屋内温度の設定変更で加湿用給水量を 24%(0.003kg/kg'時)削減した事例。

	省エネチューニング事例シート
対象	空調設備 空調-4
チューニング項目	外気量の削減
建物概要	所在地:東京都延床面積:40,668m2建物規模:B4F~20F用途:複合ビル竣工:1993年3月熱源設備:DHC
対象設備	空調機
チューニング内容	各空調機の外気ダンパー最小開度設定値を 20%として、現状(40%)との比較を行った。
実施期間	2004年(平成 16年)7月1日~2004年(平成 16年)8月13日
結果	
	8000
	y = 94.411x - 1344.5
	6000
	[[W]]
	(大) 5000 (本) 4000 (本) 4000 (************************************
	2000 タシパー開度20%(2004/7/23~29の平日)外 気量1,900m3/h×36台=68,400m3/h
	0 タンパー開度20%
	40 45 50 55 60 65 70 75 80 85 外気エンタルビ [°] [kJ/kg]
	外気条件が、71KJ/kg(30℃ 60%)のときの処理熱量を比較すると 実測値 近似直線
	チューニング前 5,600 MJ 5,400 MJ
	チューニング後 5,000 MJ 4,800 MJ
	※この調整は、日々の運転上の苦情や環境測定結果(特に喫煙している室の CO2 濃度上昇の対策)を考慮しないで、一律に外気取入ダンパー開度を 20% とした。
評価・解説	外気ダンパーの開放角度を調整することにより、ビル全体の冷水使用熱量を 10%程度削減した事例

	省エネチューニング事例シート
対象	空調設備 空調-5
チューニング項目	CO2濃度による制御
建物概要	所在地:東京都 延床面積:174,476 m2 建物規模:B4F~14F 用途:百貨店 竣工:1996 年 10 月 熱源設備:DHC
対象設備	空調機
チューニング内容	2003年(平成 15年)より室内 CO2 制御の濃度及び外気取り入れVAV最小開度の設定を変更して、夏期の外気取り入れ量を削減した。 H14年 最小 VAV 開度 30% CO2 濃度 500ppm H15年~ 最小 VAV 開度 20% CO2 濃度 1000ppm
実施期間 結果	2002年(平成 14年)~2004年(平成 16年) 7~9月 9:00~20:00 外気量を削減することにより、DHC からの受入熱量を大きく削減できた。
	平成 15 年 平均外気エンタルピ条件(65.2kJ/kg)で 75GJ/日(約 33%)削減 平成 16 年 平均外気エンタルピ条件(65.2kJ/kg)で 68GJ/日(約 30%)削減 外気エンタルピーと冷水使用量
	280
	260
	単 200 世 200 160
	长 180
	殿 160
	140
	120
	100
	35 40 45 50 55 60 65 70 75 80 85 外気エンタルピー(KJ/kg)
	X: 日平均外気エンタルピーY: 物販系統冷水使用量Y= aX+b
	平成 14年 VAV最小開度 30% 平成 15年 VAV最小開度 20% 平成 16年 VAV最小開度 20% CO2設定値 500PPM CO2設定値 1000PPM CO2設定値 1000PPM Y= aX+b Y= aX+b Y= aX+b Y= aX+b 4.8 X+ -82.4 0.9 X+ 93.7 1.2 X+ 84.5 重決定 R² 0.82 重決定 R² 0.271 重決定 R² 0.175
評価・解説	重決定 R 0.82 重決定 R 0.271 重決定 R 0.175 0.175

	省エネチューニング事例シート
 対象	空調設備 空調-6
チューニング項目	起動時の外気導入制御
建物概要	所在地:東京都 延床面積:34,800 m2 建物規模:B4F~9F 用途:複合ビル 竣工:1966 年 5 月 熱源設備:ガス焚き冷温水機
対象設備	空調機
チューニング内容	2003年9月の夏期冷房期,外気ダンパ最小開度設定値を0%と20%にすることで空調機立ち上がり時の外気取入れ量を変更し、冷凍機燃料消費量の削減量を評価した。また、2003年12月~2004年1月の冬期暖房期,同様に空調機立ち上がり時の外気取入れ量を変更し、冷凍機燃料消費量の削減量を評価した。
実施期間	2003年9月8日~9月24日, 2004年1月13~29日
結果	夏期の場合、 0%開度と 20% 開度の外気量 差は 11.9m3/h となり、20%開度を基準とすれば、33%の削減効果があった。 50 (失ら1/と) (大ら1/と
	タ期の場合、 0%開度と20% 開度の外気量 差は 16.4 ㎡/h となり、20%開度を基準とすれば、80%の削減効果があった。 「大阪」 5 0 5 10 15 外気エンタルピとガス消費量(冬期1/13~29) 「開度0% □ 開度0% □ 線形 (開度0%) 「保好」 25 □ は 15 回 15
評価・解説	起動時の外気導入量を削減することにより、起動時間 15 分の間について夏期 は 33%、冬期は 80%の熱源消費量の削減を実現した事例。

	 省エネチューニング事例シート						
対象	空調設備 空調-7						
チューニング項目	外気冷房						
建物概要	所在地:東京都 延床面積:16,741m2 建物規模:B1F~13F 用途:事務所 竣工:1992年7月 熱源設備:ガス焚き冷温水機						
対象設備	空調機						
チューニング内容	外気冷房運転時間を把握し、その省エネ効果を確認した。 対象空調機 AHU-1 10500m3/h×10 台 AHU-2 7600m3/h×10 台						
実施期間	2003年10月8日~2003年10月17日						
結果	冬期から中間期においては、外気のエンタルピーは室内空気エンタルピーより低く、冷凍機で冷熱を得て冷房するのではなく、外気を冷房負荷に見合う分だけ取り入れて室内を冷房するのが外気冷房である。今回の調査では、取り入れ外気量を把握することができなかったので、定量的に省エネルギー効果を確認することは困難だが、適切に外気冷房運転が行われていることが確認できた。外気冷房およびその他の省エネルギー効果との複合作用により、熱源ガス消費量を30%確認した。						
	100						
	90						
	(HY) 70 数						
	「O 30						
	20						
	2003/10/8(米) 2003/10/10(静) 2003/10/12(目) 4 2003/10/13(月) 2003/10/16(米) 2003/10/16(米) 2003/10/16(米) 0						
	外気冷房時間合計 外気温度 外気湿度						
評価・解説	中間期及び冬期の外気冷房効果により冷房熱源燃料消費を削減した事例						

	省エネチューニング事例シート
対象	空調設備 空調-8
チューニング項目	再熱制御システムの取り止め
建物概要	所在地:神奈川県 延床面積:75,000m2 建物規模:B2F~30F 用途:事務所ビル 竣工:1999 年 7 月 熱源設備:DHC
対象設備	空調機
チューニング内容	7~9月に実施していた除湿再熱制御を中止した。 設定条件 温度 26℃ 湿度 45% 平成 12 年(2000 年) 再熱制御あり 平成 14 年(2002 年) 再熱制御なし
実施期間	2000年 ~2002年
結果	再熱処理を中止した場合、エンタルピ基準で 5%程度の省エネを達成した。 (但し、この省エネは主として受入蒸気量の減少による効果であった。 (冷水受入量の変化は僅かであった) 再熱制御を行わない場合でも屋内湿度は 50%程度の状態が保たれており、 屋内環境が大きく悪化するのは外気が特に高湿度になる場合のみとなった。 夏期除湿制御取止めに伴う省エネ効果 (2000・2002年度 7 ~9月 冷水熱量+蒸気熱量) 18,000 14,000 12,000 12,000 14,000 12,000 14,000 12,000 14,000 12,000 14,000 12,000 14,000 12,000 14,000 12,000 10,000
	◆ 再熱 無 (2002年) □ 再熱 有 (2000年) □ 再熱 無 □ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
	除湿制御取止めによる室内 湿度の変化 (7月) 80 60 20 20 20 30 40 50 60 70 26階 事務室内 相対湿度 (%) 2000年 2002年 2003年
評価・解説	従来行っていた再熱制御を中止する事により、受入蒸気消費量を 5.5%削減した 事例。

	省エネチューニング事例シート
対象	空調設備 空調-9
チューニング項目	台数制御運転方式の改善
建物概要	所在地:神奈川県 延床面積:26,228m2 建物規模:B2F~16F 用途:事務所 竣工:1996 年 6 月 熱源設備:ガス焚き冷温水機+氷蓄熱
対象設備	空調機
チューニング内容	2002 年度迄は氷蓄熱システムと冷温水発生機とを併用して運転し、2004 年度は冷温水発生機のみにより運転を実施した。この両年度における電気・ガスエネルギー消費量を調査・分析し当ビルにおける熱源方式の変更に伴うエネルギー消費量の比較並びに省エネルギー効果を確認した。
実施期間	2002年7月~9月,2004年7月~9月
結果	
	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
	年度別、冷熱療機の運転方式変更に伴う エネルギ消費量比較(休日明け日以外のデータによる)
	80,000 2002年(万之十米蓋勢合計工利本・消費量 v = 1315.6x - 28459
	700 10,000 10,000 10,000 10,000 10,000
	10.000 300 40 50 50 50 70 80 90 90 37時間内、日平均エンタルビルJ/kgDA 70 80 90 90 2004 年度の運転の方が、9.7% ~4.9% の省エネが図れていた。
評価・解説	熱源の運転方式を変更することにより、熱源の 1 次エネルギー消費量を 4.9% 削減した事例。

		省エネチュー	ニング事例シート	,	
 対象	空調設備		空調	J-10	
チューニング項目	燃焼機の空気比調整				
建物概要	所在地: 広島県 延床面積: 35,063 m2 建物規模: B2F~22F 用途: 複合ビル 竣工: 2003 年 3 月(改修工事) 熱源設備: 炉筒煙管ボイラ+コージェネレーション+冷凍機				
対象設備	ボイラ				•
チューニング内容	改善前 空	比調整を実施し 然比 平均 2.3 然比 平均 1.3	、その前後でボイ	ラ用燃料消費量	量を比較した。
実施期間	2003年(平月	战 15 年)			
		•	改善を実施した		
		燃焼装置	残留酸素濃度	空燃比	排ガス温度
	改善前	ボイラ 1	10.8%	2.06	157℃
		ボイラ 2	12.6%	2. 50	137℃
		平均	11.7%	2. 28	147℃
	改善後	ボイラ 1	4.4%	1. 27	210℃
		ボイラ 2	4.5%	1. 27	218℃
		平均	4.5%	1. 27	214℃
	給水→ 	ボイラ ガス		ズ→ 2.1m3/目 ガス↑	ラ 880m3/日
	ボイラ給水: 3000 2500 1500 1500 500 0 0	量は同じで、ガ 10	ス使用量は 8.3% 20 ボイラー給水量	改善前改善後線形(30	
評価・解説	ボイラ空燃.	比の改善により	、燃料消費量を 8		J

	省エネチューニング事例シート
対象	空調設備 空調-11
チューニング項目	冷水出口温度設定の変更
建物概要	所在地:東京都 延床面積:30,203m2 建物規模:B1F~16F 用途:事務所 竣工:1989 年 6 月 熱源設備:ガス焚き冷温水機+ターボ冷凍機
対象設備	空調機
チューニング内容	冷水出口温度設定7℃でガス消費量を測定後、冷却水温度を固定したままで冷水出口温度設定を9℃に変更し、ガス消費量の削減効果を確認した。
実施期間	2004年10月4日~10月31日
結果	7つで設定 9つで設定 9で設定 9で設定 9で設定 9で設定 9で設定 9で設定 9で設定 9
	(ネ水學でガス消費量 ● 冷水でガス消費量 ● 冷水出度変更による冷温水発生機ガス消費量 (外気エンタルピー基準) 冷水出口温度設定を 7℃から 9℃に変更することにより、5~15%のガス消費 削減が確認された。
評価・解説	冷水出口温度設定を 7 ℃から 9 ℃に変更することにより、 5 ~ 15 %の熱源用ガ 消費量を削減した事例

省エネチューニング事例シート	
対象	空調設備 空調-12
チューニング項目	冷水出口温度設定の変更
建物概要	所在地:東京都 延床面積:72,600 m ² 建物規模:B3F~9F
	用途:物販店舗 竣工:—
	熱源設備:ターボ冷凍機+炉筒煙管ボイラ
対 象 設 備	熱源
チューニング内容	ターボ冷凍機の冷却水温度を現状のままで、ターボ冷凍機の冷水温度を現状
	(7°) および $+2^{\circ}$ (9° 、 2 モード)に変更して運転し、現状設定時及び変更設
	定時のそれぞれの段階の電力消費量及び冷水温度差を計測して成績係数
	(COP) の差異を算出した。
実 施 期 間	2005 年(平成 17年)10 月 18 日~11 月 1 日
結果	冷凍機の最大 COP は冷凍機負荷率 80%の時で,7℃設定時 5.27,9℃設定時 5.69 であった。冷凍機負荷率 80%時の COP 向上効果は 8.1%であった。
	14
	□ 冷水出口湿度がC設定 ▲ 冷水出口湿度がC設定
	12
	(C) 概 授 失
	9
	8
	7
	6
	0 10 20 30 40 50 60 70 80 90 100 冷凍機負荷率(%)
	図 冷凍機負荷率と冷水出口温度
	$y = -0.0007x^2 + 0.1116x + 1.2434$
	6 R ² = 0.8845
	5
	$y = -0.0007x^2 + 0.1112x + 0.8492$ $R^2 = 0.9362$
	3
	2
	□ 冷水出口湿度 『℃設定 ▲ 冷水出口湿度 ®℃設定
	0 10 20 30 40 50 60 70 80 90 100
	^凍機負荷率(%) 図 冷凍機負荷率と冷凍機 COP
評価・解説	
	実施した事例

省エネチューニング事例シート		
対象	空調設備 空調-13	
<u> </u>	全調政備 全調 15 冷水出口温度設定の変更	
建物概要	所在地:神奈川県 延床面積:26,228m2 建物規模:B2F~16I	F
建物版 女	用途:事務所 竣工:一	Ľ
	熱源設備:直焚吸収式冷温水機	
対象設備	冷凍機	
チューニング内容	直焚吸収式冷温水機の冷水出口温度を8℃の場合と11℃の場合とでそれぞれ	ル成
	績係数(COP)を計測し、冷水出口温度変更時の省エネルギー量を検証した。	
 実施期間	2005 年 10 月 4 日~2005 年 10 月 5 日	
結果	平均外気エンタルピ(56.1kJ/kg)時の COP は、設定 11℃の場合で 0.746、8℃の	つ場
	合で 0.601 であり、温度を変更することにより COP が約 0.15 上昇した。COP	
	向上率は約21%となった。	
	◆ 8°C時のCOP(10/5) ■ 11°C時のCOP(10/4)	
	0.85	
	y = -0.0045x + 0.9983	
	0.80	
	•	
	0.75	
	0.70	
	o o o o o o o o o o o o o o o o o o o	
	0.65	
	0.60	
	• •	
	0.55	
	y = -0.0033x + 0.7854	
	0.50	
	53 54 55 56 57 58 59 60 外気エンタルピ (kJ/kg[DA])	
	71X-27X-100/18[51/]	
評価・解説	冷水出口温度設定を8℃から11℃に変更することにより、21%の成績係数向なまなした更優]上
	を実施した事例	

	省エネチューニング事例シート
対象	空調設備 空調-14
チューニング項目	温水出口温度設定の変更
建物概要	所在地:神奈川県 延床面積: 26,228 ㎡ 建物規模: B2F~16F 用途:事務所 竣工: 1996 年 6 月
	熱源設備:冷温水発生機
対 象 設 備	熱源
チューニング内容	温水取出し温度を変更することによる冬期の熱エネルギー削減効果について検討を行うため、温水ポンプ停止時と、温水 45℃,55℃取出し時のガス消費量を比較した。
実 施 期 間	2004年(平成 16年)11月29日~12月3日,12月6日~12月10日
括	温水温度別ガス消費量
	15 20 25 30 35 40 外気エンタルピ [kJ/kgDA] 計測の結果,空調立上げ時間を除いた時間帯において温水温度を 45℃に下げた 方が,期間中の外気エンタルピ範囲において 10~15%程度の省エネが図れる結果が得られた。
評価・解説	暖房用温水の出口温度を下げることにより、暖房用熱源消費エネルギーを 10 ~15%削減した事例

省エネチューニング事例シート		
対象	空調設備	空調-15
チューニング項目	冷却水温度の設定値変更	
建物概要	所在地:東京都 延床面積: 用途:事務所 竣工:1997 熱源設備:ガス焚き冷温水機+空冷チ 空調機	7年11月
メリタ		28℃から 25℃に変更し、燃料使用量の
	比較を行った。	2000年の200に変更し、旅程使用重の
実施期間	2003年10月6日~10月16日	
結果		70% (4 市合計(M)
評価・解説	冷水出口温度設定を 28℃から 25℃に変 費量を削減した事例	変更することにより、3%の熱源用燃料消

対象	空調設備 空調-16
チューニング項目	効率低下機器の整備・修繕・交換
建物概要	所在地:東京都 延床面積:98,000m2 建物規模:B4F~37F 用途:ホテル 竣工:1987 年 熱源設備:地域冷暖房受入
対象設備	熱源設備
チューニング内容 実施期間	空調機の加湿系統や管末トラップおよびそのバイパス弁の劣化に伴う蒸気漏れ を調査し、劣化しているものの更新をした 2002 年(平成 14 年) 10~11 月
	2002 牛(牛成 14 牛) 10~11 月
結果	期間: 2002年10月 15,000 10,000 10,000 12 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 空調および厨房系統のトラップ類の更新工事を実施した 工事日を境に顕著に蒸気使用量が減っている。 日量約 6,000 kg、年間約 2,190 t の地域冷暖房からの受け入れ蒸気量を削減できた。
評価・解説	蒸気系統の無駄をBEMSにて検知し、改善することで蒸気量を 40%削減した 事例

省エネチューニング事例シート	
対象	空調設備 空調-17
チューニング項目	効率低下機器の整備・修繕・交換
建物概要	所在地:東京都 延床面積:33,606m2 建物規模:B3F~14F 用途:事務所 竣工:一 熱源設備:吸収式冷温水機
対象設備	熱源設備
チューニング内容	空調機 18 台のファンベルトを通常のものから省エネルギー型の V ベルトに更新することで動力の伝達ロスを低減し、電力量を削減した。
実施期間	2003 年(平成 15 年)
結果	(日/全) 4,500 (日/全) 3,500 (日/全) 3,500 (日/全) 1,500 (日/全) 1,500 (日/全) 1,500 (日/全) 1,500 (日/全) 1,500 (日/全) 1,500 (日/全) 1,500 (日/全) 2,500 (日/全) 2,500 (日/年) 2,500 (日/年
評価・解説	空調機の∇ベルトを省エネ型にすることで、ファン動力を3.8%改善した事例

	省エネチューニング事例シ	-
対象	空調設備	空調-18
チューニング項目	ポンプの変流量方式の改善	
建物概要	所在地:東京都 延床面積:30,203m2 用途:事務所ビル 竣工:1989 ^年 熱源設備:ガス焚吸収式冷温水機	
対象設備	二次冷水ポンプ 125 $\phi \times 100 \phi \times 1,360$	L/m×40m 18.5kW-4 台(計 74kW)
チューニング内容	二次側負荷がほぼ一定の期間に台数制御 を調整し、最適な増減運転を実施した。 ・二次側定格負荷 6,700MJ/h ・試行時の負荷 約3,000MJ/h (45%) ・送水冷水温度 9℃	
実施期間 結果	2003年9月29日(月)~2003年10月3 調整前はポンプ3~4台運転	日(金)
	最終調整後は終日 2~3 台運転 結果的には、25%程度の電力削減が図れた 最大負荷に対する動力と負荷の比率から、 ポンプ動力理論値は 33kW 程度となるが、 チューニング後の値はそれに近くなってい る。	$y = 0.0162x + 10.445$ $R^2 = 0.7606$ $y = 0.0077x + 21.093$ $R^2 = 0.1568$ 0.0 200
	25%電力削減	定格負荷の約45%
評価・解説	手動によりこまめに最適運転台数を設定 ポンプ動力を 25%削減した事例	し、自動により台数制御をした時より

	省エネチューニング事例シート
 対象	空調設備 空調-19
チューニング項目	ポンプの変流量方式の改善
建物概要	所在地:愛知県 延床面積: - 建物規模: - 用途:病院 竣工: - 熱源設備: -
対象設備	空調設備
チューニング内容	冷温水 2 次ポンプのインバータ制御を従来の設定圧力一定回転数制御から管路 抵抗特性予測制御に台数制御の制御方式を変更した。
実施期間	1999年(平成 11 年) ~2000年(平成 12 年)
結果	電力消費量 (kW/年)
評価・解説	管路抵抗特性予測制御の導入によりポンプ台数制御設定を変更し、2 次ポンプ のエネルギー消費量を 80%削減した事例

	 省エネチューニング事例シート
対象	空調設備 空調-20
チューニング項目	ポンプの変流量方式の改善
建物概要	所在地:東京都 延床面積:30,203m2 建物規模:B1F〜16F 用途:事務所 竣工:1989年6月 熱源設備:ガス焚き冷温水機+ターボ冷凍機
対象設備	空調機
チューニング内容	冷水出口温度を固定した状態で冷水 2 次ポンプの流量を変更し、ポンプの運転 台数及び動力の確認を行い、台数制御の効果を確認した。
実施期間	2003年10月28日~10月29日
結果	冷水2次ホ°ンプ°の台数最適化 87/01 20.0 18.0 16.0 14.0 12.0 8.0 6.0 4.0 2.0 00.6 1,500 2,500 2,500 2,500 1,500 1,500 1,500 1,000 6.0 4.0 2.0 00.6 1,500 00.6 1,500 00.6 1,500 00.6 1,500 00.6 1,500 00.6 1,500 00.6 1,000 6.0 1,000 6.3%
評価・解説	ポンプの台数制御による省エネルギーの有効性を確認した事例

	省エネチューニング事例シート
	空調設備 空調-21
チューニング項目	冷却水量変更
建物概要	所在地:東京都 延床面積:30,203m2 建物規模:B1F〜16F 用途:事務所 竣工:1989 年 6 月 熱源設備:ガス焚き冷温水機+ターボ冷凍機
 対象設備	空調機
チューニング内容	冷水出口温度を固定した状態で冷却水量をバルブにて変え、燃料消費量および 冷水温度差を計測し、省エネルギー効果の確認を行った。
実施期間	2003年10月29日~10月30日
結果	88 88 88 88 88 88 88 88 88 88 88 88 88
評価・解説	冷却水量は86.5%になった場合、ポンプ電力量は92%となった 冷却水量の削減によりポンプ電力消費を8%削減した事例

	省エネチューニング事例シート
対 象	空調設備 空調-22
チューニング項目	VAV 方式の送風温度の変更
建物概要	所在地:神奈川県 延床面積:35,000 m 建物規模:B3F~7F
	用途:物販施設 竣工:1993年6月
	熱源設備:冷温水発生機+ブラインターボ冷凍機
対 象 設 備	空調機
チューニング内容	空調機の送風温度設定を 18 $^{\circ}$ から 17 $^{\circ}$ 、 16 $^{\circ}$ に変更して運転し、それぞれの
	空調機消費電力を計測して省エネルギー効果を確認した。
	2005年(平成 17年)2月7日~2月14日
	2000 - (1,0,11 - 1,2,1) 1 1 2 / 1 1 1 1
110 1 0	外気エンタルピー空調機消費電力(平日)
	35
	30
	25
	(ELM 20 年 15 年 15 日本) (ELM 20
	· · · · · · · · · · · · · · · · · · ·
	編 15 実
	10
	5
	0 5 10 15 20 25 30
	外気エンタルピ(kJ/kg)
	■ 吹出温度設定18℃ ■ 吹出温度設定17℃
	 ◆ 吹出温度設定16℃ →線形(吹出温度設定18℃)
	線形(吹出温度設定16℃)線形(吹出温度設定17℃)
	 外気エンタルピー空調機消費電力(平日)により相関関係を検証すると、平日
	では吹出温度を下げると空調機消費電力の削減される傾向が見て取れる。吹出
	温度を1℃下げるごとに約5%の省エネルギー効果があることが判った。
評価・解説	VAV 制御の空調機の吹出し温度を 1℃低下させることにより、空調機ファン動
	力を 5%削減した事例

	省エネチューニング事例シート
対象	空調設備 空調-23
チューニング項目	空調設備の間欠運転
建物概要	所在地:神奈川県 延床面積:61,723m2 建物規模:B2F~5F 用途:商業施設 竣工:1982 年 10 月 熱源設備:ガス焚き冷温水機+ターボ冷凍機
対象設備	空調機
チューニング内容	外気冷房時に各階4台の空調機のうち2台の空調機のみの運転による省エネルギー運転を行い、その省エネ効果を確認した。
実施期間	2005年2月7日~2005年2月14日
結果	空調機4台/2台運転一時刻別空調機消費電力を検証すると、空調機2台運転時の空調機消費電力は4台運転時消費電力と比較して、休日で約43%、平日で約45%の省エネルギーが達成できた。 60 (AWN) (AUN)
	10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 時刻
評価・解説	外気冷房時に、空調機の運転台数を削減することで空調機動力を約43~45%削減した事例。

省エネチューニング事例シート		
対象	空調設備 空調-24	
チューニング項目	ナイトパージ	
建物概要	所在地:神奈川県 延床面積: 28,873 m² 建物規模: B4F~19F	
	用途:事務所 竣工:1997年12月	
	熱源設備:炉筒煙管ボイラ+冷温水発生機+ターボ冷凍機	
対 象 設 備	熱源設備	
チューニング内容	夜間の外気導入(以下ナイトパージとする)による室内冷却の効果について,	
	室内温湿度の経時的変化を測定し、一般的な事務室における冷却時の温度変化	
	の傾向を把握した。	
+ + + + + + + + + + + + + + + + + + +		
実施期間	2003年(平成 15年)11月8日~11月17日	
結 果		
	26	
	25 000000 00000000000000000000000000000	
	24 000000000000000000000000000000000000	
	23 — 測:北空調機OA — 測:北空調機OA — 測:北空調機OA — 測:北空調機OA	
	21 → 屋上気温 • 測:北室中央1m	
	x 比:北室中央1m	
	-30 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 (min) 00:00 02:00 04:00 06:00 08:00 10:00	
	サイトパージの有無による温度変化の違い	
	今回の測定では,外気温度が約 19° 、室内温度が約 25° の際に, 1 時間送風(約	
	6回/h)で約1℃の温度が低下し,熱全体としては1時間の外気導入で68,000kJ	
	の熱を放出した。約 15 分間でOA・EAなどの急激な温度変化は終了し、室	
	内の空気がほぼ入れ替わったと考えられ,以降は徐々に温度が低下していった。	
 評価 ・解説	ナイトパージの実施により屋内負荷(68,000kJ)を外部に放出した事例	
, 1 mm , 1 mm	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	

対象	換気設備 空調-25	
チューニング	間欠運転	
項目		
建物概要	所在地:神奈川県 延床面積:119,480 m2 建物規模:B2F~34F	
	用途:複合ビル 竣工:1994 年 3 月 熱源設備:DHC	
 対象設備	駐車場換気ファン	
チューニング		
内容	それぞれファンの積算動力を測定した。	
中长世里	2000 F(T+ 1 × F)11 = 11 = 2000 F(T+ 1 × F)11 = 10 =	
実施期間 結果	2003年(平成 15年)11月11日~2003年(平成 15年)11月13日 モード1(11/13)はモード3(11/12)に比べて50%、モード2(11/11)はモード3(11/12)	
巾木	モート1(11/13)はモート3(11/12)に比べて30%、モート2(11/11)はモート3(11/12) に比べて30%の動力削減効果があった。	
	1-1-1 (00/0/2 M3/4 111/M2/M2/KM	
	 11月11日~13日換気ファン電力量図	
	120	
	モード 1: 日積算電力 110 k Wh	
	100	
	モード 2: 日積算電力 80 k Wh	
	80	
	(量数)モード3: 日積算電力 55 k Wh	
	(4)(5)(6)(7)(8)(9)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)(1	
	40	
	20	
	0	
	8.9 8.10 8.30 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.4	
	時 刻 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	————————————————————————————————————	
	─────────────────────────────────────	
評価・解説	ファンの間欠運転間隔により、ファンの電力消費を 30%~50%削減した事例	

対象	衛生設備 衛生-1	
チューニング項 目	給湯時間と範囲を短縮・制限する	
建物概要	所在地:福岡県 延床面積:60,452m2 建物規模:B2~15F 用途:事務所 竣工:1988 年 6 月 熱源設備:ボイラー+吸収式冷凍機	
対象設備	衛生設備	
チューニング内 容	ボイラーの運転時間を、従来は 7~17 時だったものを 7~15 時に短縮して省エネを図った。ボイラー運転をしない時間は、貯湯槽内に溜まっている湯にて給湯を実施した。	
実施期間	平成 12 年~平成 13 年	
結果	中間期(10月)における給湯用ボイラーのガス消費量は、以下のようになった。 400	
評価・解説	ボイラーの運転時間を短縮することにより、給湯用ガス量を約 20%削減した事例	

対象	衛生設備	衛生-2	
チューニング項目	給湯温度を低くする	,	
建物概要	所在地:東京都 延	末面積:465,333 ㎡ 建物規模:-	
	用途:複合ビル 竣	I: —	
	熱源設備:-		
対 象 設 備	給湯		
チューニング内容	館内に循環する給湯温度を2℃低くすることで、給湯用蒸気の削減を図った。		
実 施 期 間	2002年(平成 14年)		
結 果	2002 年(平成 14 年) 給湯温度の低下により、3%(419t)の給湯用蒸気を削減した。 給湯用蒸気 消費量(t) 16,000 12,000 10,000 8,000 4,000 2,000 0 改善前 改善後		
評価 ・解説	給湯温度を低下させることで,	蒸気消費量を削減した事例	

	 省エネチューニング事例シート
	衛生設備 衛生-3
チューニング項目	貯湯槽の運転台数の削減
建物概要	所在地:福岡県 延床面積:60,452m2 建物規模:B2~15F 用途:事務所 竣工:1988 年 6 月 熱源設備:ボイラー+吸収式冷凍機
対象設備	衛生設備
チューニング内容	高層階用・低層階用と各々2台の計4台の貯湯槽があったが、各々1台運転として給湯用蒸気の使用量を削減した。
実施期間	平成 12 年~平成 13 年
結果	400 350 4月5日 4月6日 04月9日 04月1日 04月1日 04月1日 04月1日 04月1日 04月1日 04月1日 04月1日 04月1日 04月1日 07月1日
評価・解説	貯湯槽の運転台数を削減することにより、給湯用ガス消費量を約 20%削減した 事例

省エネチューニング事例シート		
 対象		電気-1
チューニング項目	タイマー・スイッチによる自動点滅	
建物概要	所在地:兵庫県 延床面積:一 用途:事務所 竣工:一 熱源設備:一	建物規模:一
対象設備	電気設備	
チューニング内容	改善前 警備員による 22 時 40 分と 24 時の巡回 24 時の時点で退室されていない場合は、 改善後 自家警備導入時に、廊下照明制御を警備	廊下照明は24時間点灯していた。 信号に連動させた。
実施期間	2001年(平成 13年)~2002年(平成 14年	(1)
結果	25,000 20,000 市/月) 10,000 5,000 5,000 導入前 改善後 19,788 k W h / 月 削減量 1,764 k W h / 月 削減率 8%	導入後
評価・解説	タイマー照明の導入により照明エネルギ	ー消費量を8%改善した事例

対象	電気設備 電気-2	
チューニング項目	個別スイッチ・人感センサによる点滅	
建物概要	所在地:神奈川県 延床面積:3,877 m² 建物規模:B1F~4F	
	用途:事務所 竣工:1966 年	
	熱源設備:吸収式冷温水機	
対 象 設 備	照明	
チューニング内容	事務室内の照明器具に人感センサを導入して、人がいないところを自動的に	
	30%出力に減光することで省エネルギーを図った。	
15 40 00		
実施期間	1999年(平成 11 年)~2000年(平成 12 年)	
結 果		
	30	
	25	
	照明消費電 15	
	力量(MW/年) ' - - - - - - - - -	
	10 5	
	導入前 導入後	
	人感センサによる不在検知制御を採用することにより 3%照明電力消費を削減	
	した。効果が小さい原因としては,不在時に消灯ではなく30%出力に減光して	
	いること、人感センサを設置している箇所が事務室部分であり在席率が高いこ	
	となどが考えられる	
評価 ・解説	人感センサによる個別点灯の導入によりエネルギー消費量を 3%改善した事例	