Final Report by Heat Pump Water Heater Evaluation Standards Subcommittee, Energy Efficiency Standards Subcommittee of the Advisory Committee for Natural Resources and Energy

September 11, 2012 Ministry of Economy, Trade and Industry The heat pump water heater evaluation standards subcommittee deliberated on evaluation standards, etc. for manufacturers and importers of heat pump water heaters (hereinafter referred to as "manufacturers, etc.") for the purpose of improving the performance of these products (the deliberation included the scope, categories, target fiscal year, target standard values, measurement methods, etc. of heat pump water heaters covered in this report) and prepared this interim report as follows.

<u>1. Target scope</u> [See Attachment 1]

Heat pump water heaters covered by this time are all of the residential heat pump water heaters using CO_2 as refrigerant. However, products equipped with a function to use heat generated by the heat pump not only for hot water supply or heat-retention of bath water but also for space heating such as floor heating are excluded from the scope.

2. Matters to be considered as evaluation standards for manufacturers, etc.

(1) Target fiscal year [See Attachment 2]

Target fiscal year for the heat pump water heaters is set as FY2017.

(2) Categories for setting targets and target standard values [See Attachment 3 and Attachment 4]

Regarding heat pump water heaters shipped by manufacturers, etc. to the domestic market in the target fiscal year, the weighted average values of energy consumption efficiency of these products obtained by the method stated in paragraph (3) below, where said weighted average values are calculated using the number of products shipped in each category as shown in Table 1 per manufacturer, shall not be below the appropriate target values.

Category	Assumed household type	Hot water storage capacity	Intended area	Heat- retention function	Number of tanks used for storing hot water	Standard energy consumption efficiency
1				With	Single	2.8
2			Normalana	WILLI	Multi	2.4
3	Standard	dard Below 240 L	normai area	Without	Single	3.0
4					Multi	2.6
5				X X 7* 4 1	Single	2.3
6				WILLI	Multi	2.0
7			Colu area	Without	Single	2.6
8				without	Multi	2.3

T-LL 1	Chandand Frances	C	Tff: .:f I	I a a t D	Water Hasters
Table I	Standard Energy	CONSUMPTION	Efficiency of I	чеат Ритр) water Heaters
I abito I	Standard Entry	consumption	Linerency of I	icaci amp	mater reactions

9				3 8 7 * 4 1	Single	2.8
10				With	Multi	2.8
11		240 L or	Normal area	337.41	Single	3.2
12		above,		Without	Multi	2.8
13		below 320		3 8 7 . 1	Single	2.3
14		L		with	Multi	2.0
15			Cold area	337.41	Single	2.7
16				Without	Multi	2.3
17	Standard			3 8 7 . 1	Single	3.3
18				With	Multi	2.8
19		320 L or	Normal area	33741	Single	3.2
20		above, below 550 L		Without	Multi	2.8
21			Cold area	With	Single	2.7
22					Multi	2.3
23				Without	Single	2.7
24					Multi	2.3
25				With	Single	2.9
26			NT 1		Multi	2.5
27			Normal area		Single	2.9
28		550 L or		Without	Multi	2.5
29		above		3 8 7 . 1	Single	2.4
30				With	Multi	2.1
31			Cold area	*****	Single	2.5
32				Without	Multi	2.2
33				With		2.4
34	Fewer family		Normal area	Without		2.8
35	members	_		With	_	2.0
36			Cold area	Without		2.4

- Note 1 "Hot water storage capacity" refers to the capacity of a tank unit which is capable of storing hot water defined in the "Residential Heat Pump Water Heaters" of Japanese Industrial Standard C 9220 (hereinafter referred to as JIS C 9220).
- Note 2 "Cold area" refers to a specification of a product which is designed and produced on the assumption that it will be used in an area where the weather is severely cold in winter, as defined in JIS C 9220.
- Note 3 "Heat-retention function" refers to a function which circulates and heats bath water.

(3) Method for measuring energy consumption efficiency [See Attachment 5 and Exhibit]

Energy consumption efficiency of a heat pump water heater is the ratio of heat quantity transferred to circulating hot water to electric power consumption per time unit when the heat pump is operating. It is expressed as "annual water heating and heat-retention efficiency" in case of heat pump water heaters with a bath water heat-retention function and as "annual water heating efficiency" in case of those without said function, both of which shall be measured by the method stipulated by JIS C 9220 and calculated by the following formulae.

<Those with a bath water heat-retention function>

Annual water heating and	_	Heat quantity acquired by hot water used in a year + Heat quantity acquired by bathtub water for heat-retention (MJ)
heat-retention efficiency		Annual energy consumption (kWh) \times 3.6

<Those without a bath water heat-retention function>

Annual water	 Heat quantity acquired by hot water used in a year (MJ)
efficiency	 Annual energy consumption (kWh) $ imes$ 3.6

- (4) Items to be indicated, etc.
 - 1) Items to be indicated

Items to be indicated are as follows.

- i) Product name or model name
- ii) Category
- iii) Energy consumption efficiency (annual water heating and heat-retention efficiency or annual water heating efficiency)
- iv) Name of manufacturer, etc.
- 2) Matters to be complied with
 - 1. Annual water heating and heat-retention efficiency and annual water heating efficiency shall be indicated up to the first decimal place.
 - 2. Items listed in the paragraph 1) above shall be indicated in catalogues and operation manuals describing the performance of product at the place which is easy to see and helps consumers choose products.
 - 3. If a product is equipped with a bath water heat-retention function, annual water heating and heat-retention efficiency must be indicated. If not equipped with the function, annual water heating efficiency must be indicated.
 - 4. If a product is intended for cold area, it must be clearly mentioned that the specification is for use in cold areas, and its annual water heating and heat-retention efficiency or annual water heating efficiency under the cold area condition shall be indicated.

3. Proposals for energy conservation

(1) Actions of Government

- 1) From viewpoint of aiming at the dissemination of heat pump water heaters with excellent energy consumption efficiency, efforts shall be made to take necessary measures such as spreading and enlightenment activities, in order to promote actions of users and manufacturers, etc.
- 2) Implementation status of information indication which is to be performed by manufacturers, etc. shall be checked periodically and continuously. Also, appropriate law management shall be made so that correct and easy-to-understand information regarding energy consumption efficiency can be provided for users.
- 3) As regards categories for which no product currently exists, necessity of making such categories and adequacy of their standard values shall be studied based on the future trend of product development, etc. by manufacturers, etc.
- 4) Energy efficiency standards based on the Top Runner method is a very effective means to reduce energy consumption of products; therefore, efforts shall be made to disseminate it internationally by catching appropriate opportunities.

(2) Actions of manufacturers, etc.

- 1) Efforts shall be made to promote technological development for further energy saving of heat pump water heaters and to develop products with excellent energy consumption efficiency.
- 2) From viewpoint of aiming at the dissemination of heat pump water heaters with excellent energy consumption efficiency, efforts shall be made to provide appropriate information to encourage users to select such heat pump water heaters, for example by using "energy-saving labels", etc. When using the energy-saving labels, consideration shall be given to the indicated items so as to be comprehensible for and not to cause misunderstanding among users.
- 3) Efforts shall be made to provide users with information about how to use products in a way that contributes to energy saving.
- (3) Actions of users
 - 1) Efforts shall be made to select heat pump water heaters with excellent energy consumption efficiency through effective use of information such as "energy-saving labels", etc. At the same time, when using heat pump water heaters, efforts shall also be made to reduce energy consumption by appropriate and effective use of them, which includes active use of energy-saving setting, etc.
 - 2) In order to maximize the performance of products, efforts shall be made to select heat pump water heaters based on the conditions of households and environment in which products are intended to be used.
- (4) Actions of retailers
 - 1) Efforts shall be made to sell heat pump water heaters with excellent energy consumption efficiency as well as to provide appropriate information to users by

utilizing "energy-saving labels", etc. so that they would select such heat pump water heaters. When using the energy-saving labels, consideration shall be given to the indicated items so as to be comprehensible for and no to cause misunderstanding among users.

- 2) For appropriate information provision to users at stores, etc., efforts shall be made to collect information on energy saving of heat pump water heaters as well as to train sales people for this purpose.
- 3) Business operators who sell and build heat pump water heaters into buildings shall also make efforts to choose and install products with excellent energy consumption efficiency so that dwellers of the buildings will utilize such water heaters.

Target Scope of Heat Pump Water Heaters

1. Basic idea

Heat pump water heaters covered by this study are all of the residential heat pump water heaters using CO_2 as refrigerant.

However, those 1) which are used for special applications, 2) for which technical methods for measurement and/or evaluation have not been established and 3) whose penetration rate in the market is extremely low shall be excluded from the scope, and specifically products described in the following paragraph 2 are excluded. Note that even though the following products are not included in the scope, 99% of the heat pump water heaters shipped is covered by this study.

2. Products excluded from the scope

Of the residential heat pump water heaters covered by this study, those which use the heat generated by the heat pump not only for water heating and heat-retention for bath water but also for space heating such as floor heating, etc. are excluded from the scope. It is because methods for measuring their energy consumption efficiency accounting for the space heating function have not been established and also because their shipment volume is extremely low.

* Estimated number of products shipped (FY2009): 5.3 thousand units (Ratio to the total number shipped: Approx. 1.0%)

Target Fiscal Year, etc. of Heat Pump Water Heaters

1. Target fiscal year

In the case of heat pump water heaters, it usually takes approximately 2 to 4 years to develop a new model; therefore, it is necessary to give consideration so that there are at least a few opportunities for manufacturers to develop new models by the target fiscal year. As such, it is reasonable to set the target fiscal year as FY2017, which is 8 years from the reference fiscal year (FY2009).

2. Improvement in target fiscal year

Improvement ratio in the target fiscal year is estimated to be 27% based on the premise that the number of products shipped and the product composition of each category in the reference year (actual figures of FY2009) remain unchanged.

<Outline of estimation>

- (1) Energy consumption efficiency calculated from the actual figures of heat pump water heaters shipped in the reference fiscal year (FY2009): 2.49
- (2) Energy consumption efficiency per unit calculated by weight-averaging target standard values with shipment volume of heat pump water heaters expected to be shipped in the target fiscal year: 3.16
- (3) Improvement ratio of energy consumption efficiency

 $\frac{3.16 - 2.49}{2.49} \times 100 = \text{Approximately } 27\%$

Categories for Setting Target for Heat Pump Water Heaters

1. Basic idea

Heat pump water heaters shall be classified based on the principles referred to as "the basic idea concerning the development and revision of evaluation standards for manufacturers, etc. to be considered in relation to the improvement in performance of specific equipment" (the 10th Energy Efficiency Standards Subcommittee of the Advisory Committee for Natural Resources and Energy, revised on June 18, 2007) (hereinafter referred to as "the principles").

"The basic idea concerning the development and revision of evaluation standards for manufacturers, etc. to be considered in relation to the improvement in performance of specific equipment"

- Extract -

- Principle 2: Specific equipment is classified based on certain indices. The indices (basic indices) are those which are deeply related to energy consumption efficiency such as physical amount and functions, and they are determined considering factors which consumers use as criteria when choosing products (factors representing consumers' needs).
- Principle 3: Target standard value <u>is determined as one value or by functional formula</u> <u>for each category based on the basic indices</u>, for which it is feasible and <u>appropriate</u> to target at the same energy consumption efficiency.
- Principle 4: When setting categories, additional functions are disregarded in principle. However, there is a case where, if the energy consumption efficiency of a product without a certain additional function is set as a target standard value, other products with the additional function may have to withdraw from the market because they cannot comply with the target standard value, despite that market needs for the latter products are thought to be high. If the probability of such case is high, then it is acceptable to make another category (sheet) for those products.

Principle 5: As regards products which are expensive but excellent in energy consumption efficiency because of using advanced energy saving technologies, although it is possible to classify them into a separate category, it is desirable to treat them in the same category with others wherever possible so that manufacturers can actively sell the products with excellent energy consumption efficiency.

Principle 6: When setting a target standard value for a category, special products shall be excluded. However, availability of technologies employed in such special products shall be also reviewed when studying the future efficiency improvement possibly realized by technology development, etc.

2. Specific classification method

Heat pump water heaters shall be classified by the following five factors based on product features.

- Classification by assumed household type
- Classification by hot water storage capacity
- Classification by intended area
- Classification by availability of heat-retention function
- Classification by the number of hot water storage tanks
- (1) Classification by assumed household type (standard or fewer family members)

Heat pump water heaters are developed not only for standard households (4 family members) but also for households with fewer family members (2 people households), and measurement methods have also been established for both types. These household types have differences in the amount of hot water used, and their measurement modes are also different. Thus, products shall be classified by the type of a household assumed at the time of designing.

(2) Classification by hot water storage capacity

Heat pump water heaters are marketed having water storage capacity that corresponds to their installation spaces and hot water amount to be used. Based on the difference in capacity, the heating capability of heat pumps, the heat-up temperature setting and the heat-up time zone of hot water tanks, etc. vary model by model, which in turn affect the performance of heat pump water heaters. Therefore, heat pump water heaters shall be classified by hot water storage capacity. Main features of heat pump water heaters for standard households classified by hot water storage capacity are shown in Table 3-1.

As regards heat pump water heaters for households with fewer family members, they have been introduced in the market with a hot water storage capacity of approximately 200 L. Considering the amount of hot water to be used, diversification of the hot water storage capacity cannot be expected hereafter; thus, the products are not classified by this factor.

(3) Classification by intended area (normal area or cold area)

Heat pump water heaters intended for cold area are, anticipating the use in the severe winter weather, designed and manufactured differently from those intended for normal area, and accordingly their evaluation methods are also different. Thus, heat pump water heaters shall be classified by intended area.

(4) Classification by the availability of heat-retention function (with or without)

Heat pump water heaters can be classified into those with a function to circulate and heat bath water and those without such function. The former needs to apply heat to bath water to perform its heat-retention function; accordingly, electric energy consumption of these two types of heat pump water heaters is different. Thus, they shall be classified by the availability of heat-retention function. (5) Classification by the number of hot water storage tanks (single or multiple)

Heat pump water heaters can be classified into those with a single hot water storage tank and those with multiple hot water storage tanks. The latter is intended to have the hot water storage unit thinner by means of containing multiple tanks of small capacity, considering the space where the product to be installed. Compared with heat pump water heaters with single storage tank, products with multiple tanks have larger heat discharge area; as a result, their heat-retention performances as well as efficiencies are lowered. Thus, they shall be classified by the number of hot water storage tanks.

As regards heat pump water heaters for households with fewer family members, they have been introduced in the market with a hot water storage capacity of approximately 200 L. Considering the amount of hot water to be used, diversification of the number of hot water storage tanks cannot be expected hereafter; thus, the products are not classified by this factor.

Table 3-1General Characteristics based on Hot Water Storage Capacity
(For Standard Households)

Tank capacity Main characteristics		Below 240 L	240 L or above, below 320 L 550 L		550 L or above
Heating-up time zone		Besides during nighttime, daytime heating-up is also performed (according to the time zone when hot water is used).	Standard (mainly heating-up during nigh		httime)
	Effect on efficiency	+		Standard	
Heat he	ting capability of eat pump unit	Being set at high so that plenty of water can be heated in a short period of time to prevent running-out of hot water.	Standard		Being set at high in order to accommodate a larger family consisting of 5 to 7 members.
	Effect on efficiency	-	Standar	-	
F ten	leating-up nperature of tank unit	Standard	As tank capacity is slightly small, heating-up temperature is set at high to compensate it.	Standard	Standard
	Effect on efficiency	Standard	-	Standard	Standard
l discl	Heat quantity narged from tank	Small	Slightly small	Standard	Large
	Effect on efficiency	+	+	Standard	-
Major tank capacity commercially available		180 L	300 L	370 L 460 L	550 L

3. Summary of classifications

Based on the indices mentioned in the paragraph 2, categories are set as shown in Table 3-2 (assumed household type: standard) and Table 3-3 (assumed household type: fewer family members).

	Hot water storage		Heat retention	Number of hot
Category	capacity	Intended area	function	water storage
	cupacity		Tunction	tanks
1			With	Single
2		Normal area		Multiple
3			Without	Single
4	Polow 240 I		Without	Multiple
5	Delow 240 L		With	Single
6		Cold area	vvitii	Multiple
7		Colu al ea	Without	Single
8			without	Multiple
9			With	Single
10		Normalana	vvitn	Multiple
11		Normai area		Single
12	240 L or above,		without	Multiple
13	below 320 L	Cold area	18/:+1-	Single
14			vvitn	Multiple
15				Single
16			without	Multiple
17			117.1	Single
18		NT	with	Multiple
19		Normal area	11/21	Single
20	320 L or above,		Without	Multiple
21	below 550 L		XX/2.1	Single
22			With	Multiple
23		Cold area	11/1	Single
24			Without	Multiple
25	550 L or above		117.1	Single
26			with	Multiple
27		Normal area	Without	Single
28			without	Multiple

Table 3-2Categories of Heat Pump Water Heaters(Assumed Household Type: Standard)

29		With	Single
30	Cold area	VVILII	Multiple
31		Without	Single
32		without	Multiple

Table 3-3Categories of Heat Pump Water Heaters(Assumed Household Type: Fewer Family Members)

Category	Intended Area	Heat-retention function	
33	Normalana	With	
34	Normal area	Without	
35		With	
36	Cold area	Without	

[Reference]

[Specifications for normal area]

Intended area	Assumed household type	Heat- retention function	Number of tanks	Below 240 L	240 L or above, below 320 L	320 L or above, below 550 L	550 L or above
Normal area	Standard	d With	Single	Category 1	Category 9	Category 17	Category 25
			Multiple	Category 2	Category 10	Category 18	Category 26
			Single	Category 3	Category 11	Category 19	Category 27
			Multiple	Category 4	Category 12	Category 20	Category 28
	Fewer family members	With		Category 33			
		Without	_	Category 34			

[Specifications for cold area]

Intended area	Assumed household type	Heat- retention function	Number of tanks	Below 240L	240L or above, below 320L	320L or above, below 550L	550L or above
Cold area	Standard	With	Single	Category 5	Category 13	Category 21	Category 29
		With	Multiple	Category 6	Category 14	Category 22	Category 30
		Without	Single	Category 7	Category 15	Category 23	Category 31
			Multiple	Category 8	Category 16	Category 24	Category 32
	Fewer family members	With	_	Category 35			
		Without	t — Category 36				

Target Standard Values for Heat Pump Water Heaters

1. Basic ideas

Target standard values are set based on the idea of Top Runner method. The specific ideas are as follows.

- 1) Target standard values shall be set for every category that has been defined appropriately.
- 2) As for categories where technological advances in the future are expected to improve the efficiency of products, target standard values shall allow for improvement as much as possible.
- 3) Target standard values shall not conflict with each other among categories.

<u>2. Calculation of specific target standard values (standard energy consumption efficiency)</u>

(1) Specific technologies for improving energy consumption efficiency and room for improvement

When setting target standard values for heat pump water heaters, efficient improvement technologies which are expected to be applied were studied. The structure of a heat pump water heater can be divided into the heat pump side for heating water and the hot water storage tank and supply circuit side for storing and supplying hot water. On the one hand, substantial efficiency improvement has so far been made for the heat pump side, because technologies similar to those adopted in air conditioners, which have already been designated as Top Runner Equipment, are used. On the other hand, as regards the hot water storage tank and supply circuit side, improvement can be expected using energy saving technologies such as (a) improvement of thermal insulation materials, (b) installation of a circuit for taking out medium temperature water and (c) improvement of heating-up control. Specific contents of these technologies are as follows.

(a) Improvement of thermal insulation (See Figure 3-1)

The function of a hot water storage unit is to store heated-up water and keep it hot until it is supplied and used. Therefore, thermal insulation of this unit greatly contributes to the energy saving of heat pump water heaters, and covering up the tank body with a thermal insulation material is commonly-used as a technique to realize it. Improvement can be achieved through controlling heat discharge from the hot water storage tank by means of using a highly-efficient thermal insulation material such as vacuum thermal insulation material in addition to conventional expanded polystyrene thermal insulation materials (foamed polystyrene).

Figure 3-1 Image of Improvement of Thermal Insulation of Hot Water Storage Tank (Example)

(b) Installation of a circuit for taking out medium temperature water (See Figure 3-2)

A tank equipped in a hot water storage unit has a structure where high temperature hot water stays at the upper part and colder water stays at the lower part, and there is a layer of medium temperature water between them. When performing heat-retention of bath water, the high temperature hot water in the tank is used; consequently, the volume of the medium temperature water increases. If this medium temperature water is supplied to the heat pump and heated, the efficiency deteriorates. However, the hot water heat and heat-retention efficiency can be improved by taking out this water preferentially to be used at lavatory, shower, kitchen, etc.,

Figure 3-2 Circuit for Taking-out Medium Temperature Water

(c) Improvement of heating-up control

Heat pump water heaters generally make hot water at night (11:00 p.m. to 7:00 a.m.). By mixing the high temperature hot water stored in the tank with low temperature tap water, it supplies hot water at a certain temperature which is preset by a remote controller. Many heat pump water heaters are equipped with a learning function which is unique to each manufacturer to estimate a hot water amount used in a day and to heat water at an appropriate temperature, thereby reducing the loss caused by heat discharge.

At the same time, they constantly monitor the hot water amount in their tank unit as well as the hot water amount used. If it is found that the hot water amount stored in the tank unit is not enough as a result of large amount of hot water use, the heat pump starts operating as appropriate to perform additional heating-up. Further improvement of efficiency can be expected from the advancement of control technologies such as timing of heating-up in daytime and nighttime and setting of the end of heat-up.

(2) Specific target standard values

According to the categories of heat pump water heaters, the Top Runner values were obtained from actual measured values (FY2009) and estimated values of annual water heating and heat-retention efficiency (in case of products with a bathwater heat-retention function) and annual water heating efficiency (products without a bathwater heat-retention function), then the target standard values were set according to the status of each category and taking into account the improvement expected to be made by the target fiscal year. When doing this, products were divided into 4 groups based on the ideas described in (A) to (D) below. Specific target standard values are as shown in Table 4-1 and Table 4-2.

(A) A major group corresponding to approximately 90% of the total number of products shipped

Cotogomy	Hot water	Intended	Heat-retention	Number of hot	Shipment
Category	storage capacity	area	function	water storage tanks	ratio
17	320 L or	320 L or		Single	68.6%
18	above, below Area		WILLI	Multiple	12.9%
19	550 L	ui cu	Without	Single	8.7%

For heat pump water heaters belonging to this major group, elemental technologies have actively been introduced. Based on this fact, Top Runner values are obtained from the actual measurement values, and <u>as much as 3 to 12% of improvement from the Top Runner values</u> by the target fiscal year is determined. Besides 1% improvement at the heat pump side, the improvement rate may account for (a) 0 to 2% due to the enhancement of thermal insulation materials, (b) 0 to 2% due to the installation of a circuit for taking out medium temperature water and (c) 2 to 7% due to the betterment of heating-up control at the hot water storage tank and supply circuit side.

[Category 17]

(B) A group whose shipment ratio in the total shipment is currently as low as approximately 3.5% but, as being close to the (A) group, expected to increase due to an anticipated enhancement of product line-up hereafter

Catagory	Hot water	Intended	Heat-retention	Number of hot water	Shipment		
Category	storage capacity	area	function	storage tanks	ratio		
9			With	Single			
10	240 L or above, below 320 L		WILLI	Multiple			
11		Normal area	Without	Single	3.5%		
25	550 Lor abovo	larcu	With	Single			
27	JJU L OI above		Without	Single			

Product development or model-change has not actively been implemented so far for products in this category, since they are marginal products of the main product group. Based on this fact, Top Runner values are obtained from actual measurement values, and <u>as much as 4 to 33% of improvement from the Top Runner values</u> by the target fiscal year is determined. Besides 0 to 5% improvement at the heat pump side, the improvement rate may account for (a) 1% due to the enhancement of thermal insulation materials, (b) 0 to 3% due to the installation of a circuit for taking out medium temperature water and (c) 2 to 30% due to the betterment of heating-up control at the hot water storage tank and supply circuit side.

(C) A group of products made for standard households but with small hot water storage capacity, products made for households with fewer family members and products made for use in cold areas.

Category	Assumed household	Hot water storage capacity	Intended area	Heat-retention function	Number of hot water storage tanks	Shipment ratio	
1	Standard	Polow 940 I		With Single			
3	Stanuaru	Delow 240 L	Normal	Without	Single	1 0%	
33	Fewer family members	Fewer family		With	_	1.070	
21	Standard	adand 320 L or above,		With	Single	5 20/	
23	Stanuaru	below 550 L	area	Without	hout Single		

The shipment ratio of products for standard households but with small hot water storage capacity due to restrictions on installation places and of products for households with fewer family members is as low as approximately 1% in the total shipment. Meanwhile, the shipment ratio of products which are the only ones available in the market among those intended for cold area is also as low as approximately 5.3% in the total shipment. Therefore, the Top Runner values of actual measurement values are directly set as the Top Runner values in the target fiscal year for these products.

0.0

(D) A group in which products do not exist in data of the reference fiscal year (FY2009)

Since actual measurement values of this group of products are not available, the Top Runner values in the target fiscal year were estimated using the ratios in other categories (See Table 4-1). When doing this, fraction numbers were rounded up in order to further promote energy saving. Details are as per (1) to (7) below, which are corresponding to the numbers listed in Table 4-1.

(1) Estimation method of products for normal area, for standard household and with multiple tanks:

The ratio of target standard values (3.3:2.8) of (a) single-tank type and (b) multi-tank type of products whose capacity is 320 L or above and below 550 L and which are equipped with a heat-retention function is applied to the relation of the target standard value of single-tank products to the value of multi-tank products sharing the same capacity category and the same heat-retention function category. * Category 2, 4, 12, 20, 26 and 28 fall under the case of (1).

(2) Estimation method of products for cold area, for standard household, with a heat-retention function and with single tank:

The ratio of target standard values (3.3:2.7) of products (a) intended for normal area and (d) intended for cold area whose capacity is 320 L or above and below 550 L is applied to the relation of the target standard value of products intended for normal area to the value of products intended for cold area sharing the same capacity category.

* Category 5, 13 and 29 fall under the case of (2).

(3) Estimation method of products for cold area, for standard household, without a heat-retention function and with single tank:

The ratio of target standard values (3.2:2.7) of products (c) intended for normal area and (e) intended for cold area whose capacity is 320 L or above and below 550 L is applied to the relation of the target standard value of products intended for normal area to the value of products intended for cold area sharing to the same capacity category.

* Category 7, 15 and 31 fall under the case of (3).

(4) Estimation method of products for cold area, for standard household and with multiple tanks:

The ratio of target standard values (3.3:2.8) of (a) single-tank type and (b) multi-tank type of products intended for normal area whose capacity is 320 L or above and below 550 L and which are equipped with a heat-retention function is applied to the relation of the target standard value of single-tank products intended for cold area to the value of multi-tank products intended for cold area sharing the same capacity category and the same heat-retention function category.

* Category 6, 8, 14, 16, 22, 24, 30 and 32 fall under the case of (4).

(5) Estimation method of products for normal area, for household with fewer family members and without a heat-retention function:

The ratio of target standard values (2.8:3.2) of single-tank products (f) with a heat-retention function and (g) without a heat-retention function which are for standard household and whose capacity is 240 L or above and below 320 L is applied to the relation of the target standard value of products with a heat-retention function to the value of products without the function sharing the same intended area category and the same assumed household category.

* Category 34 falls under the case of (5).

(6) Estimation method of products intended for cold area, for household with fewer family members and with a heat-retention function:

The ratio of target standard values (3.3:2.7) of single-tank products (a) intended for normal area and (d) intended for cold area which are for standard household and equipped with a heat-retention function and whose capacity is 320 L or above and below 550 L is applied to the relation of the target standard value of products intended for normal area, for household with fewer family members and with a heat-retention function to the value of products intended for cold area sharing the same assumed household category and the same heat-retention function category. * Category 35 falls under the case of (6).

(7) Estimation method of products intended for cold area, for household with fewer family members and without a heat-retention function:

The ratio of target standard values (3.2:2.7) of single-tank products (c) intended for normal area and (e) intended for cold area which are for standard household and equipped with a heat-retention function and whose capacity is 320 L or above and below 550 L is applied to the relation of the target standard value of products intended for normal area, for households with fewer family members and without a heat-retention function to the value of products intended for cold area sharing the same assumed household category and the same heat-retention function category. * Category 36 falls under the case of (7).

Intended area	Assumed household	Heat- retention function	Number of tanks	Below 240 L	240 L or above, below 320 L	320 L or above, below 550 L	550 L or above
		With	Single	Category 1 (C) 2.8	Category 9 (B) 2.8 (f)	Category 17 (A) 3.3 (a)	Category 25 (B) 2.9
	Standard Fewer family		Multiple	Category 2 (D) (1) 2.4	Category 10 (B) 2.8	Category 18 (A) 2.8 (b)	Category 26 (D) (1) 2.5
Normal		Without	Single	Category 3 (C) 3.0	Category 11 (B) 3.2 (g)	Category 19 (A) 3.2 (c)	Category 27 (B) 2.9
area			Multiple	Category 4 (D) (1) 2.6	Category 12 (D) (1) 2.8	Category 20 (D) (1) 2.8	Category 28 (D) (1) 2.5
		With	_	Category 33 (C) 2.4			
	members	Without	_	Category 34 (D) (5) 2.8			

Table 4-1 Target Standard Values for Heat Pump Water Heaters

[Products	intended	for	normal	areal
[roadous	meenaea			areaj

[Products intended for cold area]

Intended area	Assumed household	Heat- retention function	Number of tanks	Below 240 L	240 L or above, below 320 L	320 L or above, below 550 L	550 L or above
		With	Single	Category 5 (D) (2) 2.3	Category 13 (D) (2) 2.3	Category 21 (C) 2.7 (d)	Category 29 (D) (2) 2.4
	Standard		Multiple	Category 6 (D) (4) 2.0	Category 14 (D) (4) 2.0	Category 22 (D) (4) 2.3	Category 30 (D) (4) 2.1
Cald		Without	Single	Category 7 (D) (3) 2.6	Category 15 (D) (3) 2.7	Category 23 (C) 2.7 (e)	Category 31 (D) (3) 2.5
area			Multiple	Category 8 (D) (4) 2.3	Category 16 (D) (4) 2.3	Category 24 (D) (4) 2.3	Category 32 (D) (4) 2.2
		With	_	Category 35 (D) (6) 2.0			
	members	Without	_	Category 36 (D) (7) 2.4			

Category	Assumed household	Hot water storage capacity	Intended area	Heat- Retention function	Number of hot water storage tanks	[Reference fiscal year] Weighted average values	[Reference fiscal year] Top Runner values	[Target fiscal year] Target standard values	Improve- ment from Top Runner value [%]	Improve- ment from weighted average values [%]			
1					Single	2.30	2.8		_	22			
2			Normal	with	Multiple	_	_	2.4	-	-			
3			area	Without	Single	3.00	3	.0	_	_			
4		Below		without	Multiple	Ι	—	2.6	_	_			
5		240 L		With	Single	-	-	2.3	-	—			
6			Cold	with	Multiple	-	-	2.0	-	-			
7			area	Without	Single	-	-	2.6	-	-			
8				Without	Multiple	-	_	2.3	_	-			
9				With	Single	2.37	2.5	2.8	12	18			
10			Normal	with	Multiple	2.10	2.1	2.8	33	33			
11		240 L	240 L	area	Without	Single	3.00	3.0	3.2	7	7		
12		0r above		manout	Multiple	_	-	2.8	-	-			
13		below	Cold area	With	Single	_	-	2.3	-	-			
14		320 L		Cold area	Cold area	Cold		Multiple	_	-	2.0	-	-
15	Idard					Without	Single	-	-	2.7	-	-	
16	Star			manout	Multiple	_	-	2.3	-	-			
17				With	Single	2.55	3.1	3.3	6	29			
18			Normal		Multiple	2.19	2.5	2.8	12	28			
19		320 L	area	Without	Single	3.00	3.1	3.2	3	7			
20		0r above		manual	Multiple	_	-	2.8	-	-			
21		below		With	Single	2.03	2	.7	_	33			
22		550 L	Cold		Multiple	_	-	2.3	-	-			
23			area	Without	Single	2.60	2	.7	_	4			
24					Multiple	_	_	2.3	_	_			
25		550 L or		With	Single	2.40	2.5	2.9	16	21			
26		above	Normal		Multiple	_	-	2.5	-	-			
27			area	Without	Single	2.80	2.8	2.9	4	4			
28					Multiple	-	_	2.5	_	_			
29			Cold area	With	Single	-	_	2.4	_	_			
30					Multiple	-	-	2.1	-	-			

 Table 4-2
 Target Standard Values for Heat Pump Water Heaters per Category

31				Without	Single	_	_	2.5	_	_
32				without	Multiple	_	_	2.2	_	_
33	y		Normal	With		2.40	2	.4	_	_
34	famil		area	Without				2.8	_	_
35	ewer mem	_ (Cold	With	_			2.0	_	_
36	ц		area	Without				2.4	_	_
	Total					2.49	2.88	3.16	10	27

Energy Consumption Efficiency of Heat Pump Water Heaters and the Measuring Method

1. Basic idea

For the measurement of energy consumption efficiency of heat pump water heaters, the measuring method based on actual usage, which is stipulated in JIS C 9220 "Residential Heat Pump Water Heaters" (hereinafter referred to as JIS C 9220) of year 2011, shall be adopted.

2. Specific energy consumption efficiency and the measuring method

(1) Energy consumption efficiency

Energy consumption efficiency of a heat pump water heater is the ratio of heat quantity transferred to circulating hot water to electric power consumption per time unit when the heat pump is operating. It is expressed as "annual water heating and heat-retention efficiency" in case of heat pump water heaters with a bath water heat-retention function and as "annual water heating efficiency" in case of those without said function, both of which shall be measured by the method stipulated by JIS C 9220 (see Attachment) and calculated by the following formulae.

<Those with a bath water heat-retention function>

Annual water		Heat quantity acquired by hot water used in a year +
heating and		Heat quantity acquired by bathtub water for heat-retention (MJ)
heat-retention efficiency	-	Annual energy consumption (kWh) \times 3.6

<Those without a bath water heat-retention function>

Annual water	_	Heat quantity acquired by hot water used in a year (MJ)
efficiency		Annual energy consumption (kWh) \times 3.6

Methods for Measurement and Calculation of Annual Water Heating and Heat-retention Efficiency (for Products with a Bathwater Heat-retention Function)

1. Procedures for measurement and calculation of annual water heating and heat-retention efficiency

A residential heat pump water heater is composed of a "heat pump unit" and a "hot water storage unit".

Composition of Residential Heat Pump Water Heater

• Specific procedures for measurement and calculation of energy consumption efficiency are as follows.

[Procedure (1)] Calculation of "water heating and heat-retention mode efficiency" of a system as a whole

- The measurement is performed in "water heating and heat-retention mode (under the winter condition)" according to an actual usage.

[Procedure (2)] Calculation of "heat pump unit efficiency"

- The measurement is performed under 6 temperature conditions (i.e. standard heating conditions (middle season, summer and winter), high temperature heating conditions (winter and frosting season) and water heating mode heating condition).
- * For products intended for cold area, an additional measurement shall be performed under a high temperature heating condition for winter season in cold area.

[Procedure (3)] Calculation of "annual water heating and heat-retention efficiency"

- (1) A factor is obtained from "water heating and heat-retention mode efficiency" and "heat pump unit efficiency" under the winter condition. With the factor, "water heating and heat-retention mode efficiency" under each outside temperature is calculated.
- (2) "Annual heat quantity of water heating and heat-retention" is calculated from the number of days when applicable outside temperature occurs and the in-coming water temperature.
- (3) "Energy consumption" at each outside temperature is obtained from "heat quantity of water heating and heat-retention mode" and the "water heating and heat-retention mode efficiency" of each outside temperature, and they are summed up to obtain "annual energy consumption".
- (4) "Annual water heating and heat-retention efficiency" is calculated from the "annual heat quantity of water heating and heat-retention" and the "annual energy consumption".

2. Outline of methods for measurement and calculation of annual water heating and heat-retention efficiency

Ite	ems	Outline - In the case of products with a bathwater heat-retention function -							
	Temperature condition	Air temperature: Dry bulb 7.0±1°C, wet bulb 6.0±0.5°C Water temperature: Water supply temperature 9.0±2.0°C							
		Test facility, sample product for test and, placement of measuring instruments for a heat pump water heater (Example)							
mode efficiency" of a system as a whole	Test instrument	Measurement instruments a) Temperature gauges to measure temperatures of water supply and hot water supply, and a flow meter to measure the volume of hot water returning from bath. c) An integrating wattmeter to measure temperatures of water going to and returning from the heat pump unit, and a flow meter to measure the volume of hot water going to the heat pump unit. e) A thermocouple to monitor the heat quantity of hot water remaining in the hot water storage tank.							
r heating and heat-retention	Operational state	Test shall be conducted by operating a residential heat pump water heater at the rated frequency and the rated voltage (the tolerance is within ±2% for each rating). A residential heat pump water heater shall be operated with an as-shipped operation setting. However, in case of a product equipped with a learning control function, it shall be operated with an as-shipped operation setting until the operation is stabilized in a water heating and heat-retention mode. If remaining hot water amount after, the operation is stabilized is below 100 L at 40°C, the operation setting must be changed so that the remaining hot water amount becomes 100 L or above at 40°C. How to set this operation setting for test shall be documented in a technical data. Heating-up temperature of the operation setting for test must be the same or above the heating-up temperature when the product is in a stable state after being operated in the water heating and heat-retention mode with the as-shipped operation setting.							
lculation of "wate	Heat quantity of water heating and heat-retention	Meating and neat-retention mode with the as-snipped operation setting. Water heating and heat-retention mode: "Standard Usage Mode for Bathwater Heating of Bath Furnace with Hot Water Supply Function" of JIS S 2072 is adopted (Attachment 1). * To enhance the accuracy of measuring heat quantity of water heating, a usage mode which summarizes successive operations having the same intended usage is prepared (Attachment 2). (As for a water heating mode, TS S 0003 "Standard Usage Mode of Water Heating Appliances used for Kitchens Lavatorias Showers and Baths" is adopted)							
Procedure (1) Ca	Test procedures	Water heating performance test is conducted according to the following schedule, and then the heat quantity of water heating and heat-retention and the electric energy consumption on the third day are measured. The heat quantity of water heating on each day must be within the range of ±5%, and the heat quantity of heating-up on the second and third days must be within the range of ±5%. <pre> </pre>							
		(4) Water heating, heat-retention							
		Time zone for measuring heat quantity of heating-up Time zone for measuring electric energy consumption							

Ite	ems	Outline - In the case of products with a bathwater heat-retention function -						
		Water heating and heat-retention mode efficiency is calculated by the following formula.						
		Water heating and heat-retention mode efficiency $C_{MW1} = \frac{Q_{MW1}}{P_{MW1} \times 3.6}$						
		Here:						
		C _{MW1} : Water heating and heat-retention mode efficiency						
		Q_{MW1} : Heat quantity of water heating and heat-retention mode (MJ) \leftarrow Total of water heating's heat						
'n.		quantity and heat-retention's heat quantity of one day						
enc		P_{MW1} : Energy consumption in water heating and heat-retention mode (kWh) \leftarrow Energy consumption of one						
fici		day when operating in water heating and heat-retention mode						
e ef		3.0: Factor to convert kwn to MJ						
pom u		Heat quantity of water heating $Q = \sum_{j=t_s}^{t_e} \left\{ (T_m - T_i) \times q_m \times \rho \times c_p \times t_m \right\}$						
ntic		Here:						
ete		Q: Heat quantity of each water heating mode (kJ)						
at-r		j: Section numbered for each measurement interval						
hea	la	T _m : Hot water supply temperature (°C)						
pue	nm	ts: Time when hot water supply starts						
<u>а</u>	for	te: Time when hot water supply ends						
atin	ion	I_i : Water supply temperature when simultaneously measuring each not water supply temperature (°C) V_i : Weter density of each bet water supply temperature (V_i) (from Table A 4)						
he	ılat	p. Water density at each not water supply temperature ($xy'L$)(i) on rable A.4)						
iter	alcu	a _m : Flow rate in measurement interval (L/min)						
"	Ü	t_m : Measurement interval (min)						
lof								
ulatior		Heat quantity of heat-retention $Q_{k} = \sum_{j=t_{s}}^{t_{e}} \left\{ \left(T_{ok} - T_{ik}\right) \times q_{k} \times \rho \times c_{p} \times t_{k} \right\}$						
alcı		Here:						
C		Q _k : Heat quantity of each heat-retention mode (kJ)						
e (1		j: Section numbered for each measurement interval						
dur		T_{oK} : Temperature of water going to bath (°C)						
oce		ts: Time when valid heat quantity of water heating starts						
$\mathbf{P}_{\mathbf{r}}$		te: Time when hot water supply ends						
		Γ_{ik} . Temperature of not water returning from bath when simultaneously measuring temperature of not water going to both (°C)						
		o: Water density at temperature of water going to bath (kg/L) (from Table A 4)						
		c_n : Average specific heat of water 4.1796 (k.J/kg· °C) (constant value)						
		q _k : Flow rate in measurement interval (L/min)						
		t _m : Measurement interval (min)						
		Accumulation shall be made as far as the condition of $T_{0K} > T_{1k}$ is right.						
		-						

Ite	ems		Outline - In the case of products with a bathwater heat-retention function -								
	Products for households with fewer family members	Evaluation shall be made after replacing the water heating and heat-retention loads by the ones according to water heating and heat-retention mode for household with fewer family members (Stipulation). * A usage mode which lists operations in water heating and heat-retention mode for households with fewer family members as well as a usage mode which summarizes successive operations having the same intended usage listed in the aforementioned mode are prepared (Attachment 3).									
		Annual water temperature, water heating	Annual water heating and heat-retention efficiency is calculated by using the following table for outside temperature, water supply temperature and number of days when each outside temperature occurs. Annual water heating and heat-retention efficiency for normal area shall also be indicated for reference.								
		Temperature category	Outside temperature <i>ti</i> °C	Number of days di d	Temperature category	Outside temperature ti °C	Number of days di d	Temperature category i	Outside temperature <i>ti</i> °C	Number of days di d	
		1	-10	0	16	5	10	31	20	11	
		2	-9	1	17	6	11	32	21	9	
		3	-8	2	18	7	11	33	22	9	
s	с,	4	-7	3	19	8	9	34	23	9	
ier	ld area	5	-6	5	20	9	10	35	24	6	
Oth		6	-5	8	21	10	9	36	25	4	
Ŭ	col	7	-4	11	22	10	10	37	26	1	
	for	8	-3	13	23	12	11	38	27	0	
	pə	9	-2	15	24	13	11	39	28	0	
	pu	10	-1	16	25	14	12	40	29	0	
	nte	11	0	20	26	15	13	41	30	0	
	ts i	12	1	16	27	16	15	42	31	0	
	nc	13	2	13	28	17	15	43	32	0	
	rod	14	3	11	29	18	13	_	_	-	
	Р	15	4	9	30	19	13	Tota	al	365	
		To calculate a unit efficiency	nnual wate of product	r heating a under the	and heat-retent following condi	ion efficien tion shall b	cy of produ e actually n	cts intended fo neasured.	or cold area	, heat pump Unit: °C	
					_		Inlet air tem	perature	Water tempe	erature	
			Condition	,	Temperature sett going-out hot wa	ing of ater te	Dry bulb mperature	Wet bulb temperature	In-coming temperat	water cure	
		High ter condition fe	nperature he or winter in co	ating old area te	High heating- emperature in col	up d area	-7	-8	5		
						1					

_

_

50.00

2.50

0.83

5.00

0.83

455.74

Water heating and heat-retention mode Heat quantities are those in the winter condition. Start Heat quantity of hot Heat quantity of Flow rate Hot water supply No. Usage time water heating MJ heat-retention MJ L/min amount 1 Lavatory 7:00:00 1.286 5 10.00 2 7:02:30 0.107 5 0.83 Lavatory 3 7:03:10 0.107 5 0.83 Lavatory _ 4 Lavatory 7:04:20 0.107 5 0.83 _ 5 7:05:00 0.107 5 0.83 Lavatory _ 6 0.643 5 5.00 Kitchen 8:15:00 _ 7 Kitchen 8:16:30 0.107 _ 5 0.83 8 Kitchen 8:17:10 0.107 5 0.83 _ 9 Kitchen 8:27:20 3.214 _ 5 25.00 10 Kitchen 8:34:20 0.321 5 2.50 5 11 13:00:00 0.643 5.00 Kitchen 12 Kitchen 13:01:30 0.107 5 0.83 13 Kitchen 13:02:10 0.107 5 0.83 14 13:07:20 1.286 5 10.00 Kitchen _ 15 Kitchen 13:10:20 0.321 _ 5 2.50 16 Kitchen 18:15:00 0.643 5 5.00 _ 0.107 5 17 Kitchen 18:16:30 0.83 _ 18 Kitchen 18:18:40 0.643 5 5.00 _ 19 0.643 5 5.00 Kitchen 18:24:40 _ 20 Kitchen 18:26:10 0.107 5 0.83 _ 21 Kitchen 18:26:50 0.107 _ 5 0.83 5 22 Kitchen 18:27:30 0.107 _ 0.83 23 Kitchen 18:32:40 0.321 5 2.50 _ 24 Kitchen 18:33:40 0.107 _ 5 0.83 0.107 0.83 25 Kitchen 18:34:20 5 _ 23.143 10-15 180.00 26 Bath 19:40:00 _ 27 Kitchen 20:00:00 1.286 5 10.00 28 20:02:30 0.321 5 Kitchen 2.50 _ 29 Shower 20:08:00 2.571 10 20.00 _ 30 Kitchen 20:12:00 0.321 5 2.50 _ 5 31 Kitchen 20:13:00 0.107 0.83 _ 32 Kitchen 20:18:10 0.321 5 2.50 _ 33 Kitchen 20:19:10 0.107 _ 5 0.83 0.107 0.83 34 Kitchen 20:19:50 5 1.020 35 Heat-retention 20:27:00 36 Shower 20:30:00 6.428 10 50.00 37 Kitchen 20:36:00 0.107 5 0.83 _ 38 Kitchen 20:36:40 0.107 _ 5 0.83 39 Kitchen 20:37:20 0.107 _ 5 0.83 20:38:00 0.107 5 0.83 40 Kitchen _ 20:57:00 41 Heat-retention 0.530 _ 42 21:27:00 0.530 Heat-retention _ _ 21:57:00 0.530 43 Heat-retention _ Lavatory 1.286 5 10.00 44 22:00:00 45 Lavatory 22:02:30 0.107 5 0.83 46 Lavatory 22:03:10 0.107 5 0.83 _ 0.107 5 0.83 47 Lavatory 22:03:50 _ 2.571 10 20.00 48 Shower 22:14:00 49 22:16:30 0.107 5 0.83 Lavatory _ 0.107 5 50 Lavatory 22:17:10 0.83 1.020 51 Heat-retention 22:27:00 _ _

52

53

54

55

56

Shower

Lavatory

Lavatory

Lavatory

Lavatory

Total

22:32:20

22:39:20

22:40:50

22:43:00

22:45:00

6.428

0.321

0.107

0.643

0.107

58.594

_

_

_

4.120

10

5

5

5

5

_

Water heating and heat-retention mode

(when operations for the same intended usage are summarized)

Heat quantities are those in the winter condition.

No.	Usage	Start time	Heat quantity of hot	Heat quantity of	Flow rate	Hot water supply
- 1	T I	7 00 00	water neating wij	neat-retention MJ	L/IIIII	
1	Lavatory	7:00:00	1./13	_	5	13.32
2	Kitchen	8:25:00	4.392	-	5	34.16
3	Kitchen	13:05:00	2.463	-	5	19.16
4	Kitchen	18:25:00	2.890	-	5	22.48
5	Bath	19:40:00	23.143	-	10-15	180.00
6	Kitchen	20:01:00	1.607	-	5	12.50
7	Shower	20:08:00	2.571	-	10	20.00
8	Kitchen	20:16:00	0.963	-	5	7.49
9	Heat-retention	20:27:00	-	1.020	-	-
10	Shower	20:30:00	6.428	-	10	50.00
11	Kitchen	20:37:00	0.427	-	5	3.32
12	Heat-retention	20:57:00	-	1.020	-	-
13	Heat-retention	21:27:00	-	0.530	-	-
14	Heat-retention	21:57:00	_	0.530	_	-
15	Lavatory	22:02:00	1.606	-	5	12.49
16	Shower	22:14:00	2.571	-	10	20.00
17	Lavatory	22:17:00 0.213		-	5	1.66
18	Heat-retention	22:27:00	-	1.020	-	-
19	Shower	22:32:20	6.428	-	10	50.00
20	Lavatory	22:43:00	1.178	-	5	9.16
	Total		58.594	4.120	_	455.74

Attachment 3

Water heating and heat-retention mode for household with fewer family members

Heat quantities are those in the winter condition.

No	Usage	Start	Heat quantity of hot	Heat quantity of	Flow rate	Hot water supply
110.	Osuge	time	water heating MJ	heat-retention MJ	L/min	amount L
1	Lavatory	7:00:00	0.643	-	5	5.00
2	Lavatory	7:02:30	0.107	-	5	0.83
3	Lavatory	7:03:10	0.107	-	5	0.83
4	Kitchen	8:15:00	0.129	-	5	1.00
5	Kitchen	8:16:30	0.107	-	5	0.83
6	Kitchen	8:17:10	0.107	-	5	0.83
7	Kitchen	8:27:20	1.286	-	5	10.00
8	Kitchen	8:34:20	0.129	-	5	1.00
9	Kitchen	13:00:00	0.129	-	5	1.00
10	Kitchen	13:01:30	0.107	-	5	0.83
11	Kitchen	13:02:10	0.107	-	5	0.83
12	Kitchen	13:07:20	0.514	-	5	4.00
13	Kitchen	13:10:20	0.129	-	5	1.00
14	Kitchen	18:15:00	0.193	-	5	1.50
15	Kitchen	18:16:30	0.107	-	5	0.83
16	Kitchen	18:18:40	0.257	-	5	2.00
17	Kitchen	18:24:40	0.172	-	5	1.34
18	Kitchen	18:26:50	0.107	-	5	0.83
19	Kitchen	18:27:30	0.107	-	5	0.83
20	Kitchen	18:32:40	0.214	-	5	1.66
21	Kitchen	20:00:00	0.514	-	5	4.00
22	Kitchen	20:02:30	0.129	-	5	1.00
23	Kitchen	20:12:00	0.171	-	5	1.33
24	Kitchen	20:18:10	0.214	-	5	1.66
25	Kitchen	20:37:00	0.171	-	5	1.33
26	Bath	20:40:00	19.285	-	10-15	150.00
27	Shower	21:08:00	2.571	-	10	20.00
28	Heat-retention	21:27:00	-	0.850	-	_
29	Heat-retention	21:57:00	-	0.442	-	_
30	Heat-retention	22:27:00	-	0.442	-	_
31	Shower	22:32:20	6.428	-	10	50.00
32	Lavatory	22:39:20	0.910	_	5	7.08
33	Lavatory	22:42:00	0.214	-	5	1.67
34	Lavatory	22:44:30	0.375	-	5	2.92
	Total		35.737	1.734	-	277.96

Water heating and heat-retention mode for household with fewer family members (when operations for the same intended usage are summarized) Heat quantities are those in the winter condition.

				Houe quain	intros are thos	
No.	Usage	Start time	Heat quantity of hot water heating MJ	Heat quantity of heat-retention MJ	Flow rate L/min	Hot water supply amount L
1	Lavatory	7:00:00	0.856	_	5	6.66
2	Kitchen	8:25:00	1.757	-	5	13.66
3	Kitchen	13:05:00	0.985	_	5	7.66
4	Kitchen	18:25:00	1.156	-	5	8.99
5	Kitchen	20:01:00	0.643	-	5	5.00
6	Kitchen	20:16:00	0.385	-	5	3 00
7	Kitchen	20:37:00	0.171	-	5	1.33
8	Bath	20:40:00	19.285	-	10-15	150.00
9	Shower	21:08:00	2.571	-	10	20.00
10	Heat-retention	21:27:00	-	0.850	-	-
11	Heat-retention	21:57:00	-	0.442	-	-
12	Heat-retention	22:27:00	-	0.442	-	-
13	Shower	22:32:20	6.428	-	10	50.00
14	Lavatory	22:43:00	1.498	_	5	11.66
	Total		35.737	1.734	-	277.96

Heat Pump Water Heater Evaluation Standards Subcommittee, Energy Efficiency Standards Subcommittee of the Advisory Committee for Natural Resources and Energy Meeting History

First Subcommittee Meeting (July 20, 2010)

- Disclosure of the Heat Pump Water Heater Evaluation Standards Subcommittee
- Current status of heat pump water heaters
- Scope of heat pump water heaters
- Energy consumption efficiency of heat pump water heaters and its measurement method

Second Subcommittee Meeting (March 28, 2012)

- Classification of heat pump water heaters
- Target fiscal year and target standard values for heat pump water heaters

Third Subcommittee Meeting (April 17, 2012)

- Interim report on heat pump water heaters

Heat Pump Water Heater Evaluation Standards Subcommittee, Energy Efficiency Standards Subcommittee of the Advisory Committee for Natural Resources and Energy List of Members

Chairman	Motoyasu Kamata	Professor Emeritus, The University of Tokyo
Members	Yukie Iino	Researcher, Consumer Lives Research Center, Japan Consumer's Association
	Tadayoshi Tanaka	General Manager, Technology Planning and Management Department, The Energy Conservation Center, Japan (Replaced by committee member Inoue from the second meeting)
	Mamoru Inoue	General Manager, Technology Planning and Management Department, The Energy Conservation Center, Japan (Joined from the second meeting)
	Shinya Okada	Deputy Chairman, Heat Pump Water Heater Committee, The Japan Refrigeration and Air Conditioning Industry Association
	Kiyoshi Saito	Professor, Faculty of Science and Engineering, Waseda University
	Masako Sugimoto	Director, Nippon Association of Consumer Specialists
	Hirofumi Daiguji	Associate Professor, Graduate School of Frontier Sciences, The University of Tokyo
	Koichi Takubo	Manager, Business Department, The Federation of Electric Power Companies of Japan
	Chiharu Murakoshi	Vice President, Jyukankyo Research Institute Inc.

Status Quo of Heat Pump Water Heaters

July 22, 2010

Ministry of Economy, Trade and Industry Commerce and Information Policy Bureau Information and Communication Electronics Division

1. What is Heat Pump Water Heater?

Heat pump water heaters

 A collective name for water heaters using the principle of heat pump as in the case of air conditioners. They are considered as products excellent in energy saving performance. There are residential heat pump water heaters and commercial heat pump water heaters.

* The name "EcoCute" is a registered trade name of the Kansai Electric Power Co., Inc., which is used by many companies with the permission of said company.

Features

✓ The heat pump unit ((1) in the right figure) efficiently makes a large amount of hot water, and then it is stored (storage temperature at 65 to 90) in the hot water storage unit ((2) in the right figure). Hot water is served from the storage unit when it is used at baths, lavatories, kitchens, etc.

✓ Residential heat pump water heaters generally make hot water using less expensive nighttime electricity, so their electric bill is relatively low.

Refrigerant used

✓ Heat pump water heaters using HFC (fluorocarbon) as refrigerant are conventionally available in the market. However, those using carbon dioxide (CO_2) as refrigerant were developed in 2001, and the demands, especially for residential models, has been expanding. (Some commercial models are still using HFC.)

2. Types of Heat Pump Water Heaters (1)

Residential heat pump water heaters

✓ Residential heat pump water heaters are classified into several types according to their tank shape, capacity, function, etc. The capacity ranges from 370 to 460 L in case of products for standard households (4 family members) and from 150 to 200 L in case of compact tanks (for a single, 2 family members, etc.).

1. Types by tank shape and capacity

<Standard tank>

<Thin tank>

<Compact tank>

<All-in-one type>

2. Types by function

a. Full-auto type

Those equipped with functions of "automatic hot water filling", "hot water adding", "automatic heat-retention" and "reheating" for bath.

b. Auto (semi-auto) type

Those equipped with functions of "automatic hot water filling" and "hot water adding" for bath.

c. Hot water supply only type

Those designed only for hot water supply, so they fill a bath with hot water through a faucet.

d. Multifunction type

Those equipped with a floor heating function in addition to a hot water supply function for bath, lavatory, kitchen, etc.

3. Types of Heat Pump Water Heaters (2)

Commercial heat pump water heaters Commercial heat pump water heaters are used in commercial facilities such as buildings, hotels, etc. Following types are available according to their scales and hot water amount used.

<For small scale buildings>

- ✓ Clinics, inns, small welfare facilities, etc.
- ✓ Restaurants, shops, etc.

<For large scale buildings>

- ✓ Hospitals, hotels, large welfare facilities
- ✓ Sports spa facilities, meal supply facilities, etc.

4. Shipping Quantity of Heat Pump Water Heaters (1) (Residential)

Residential heat pump water heaters

✓ Shipping quantity of residential heat pump water heaters started to rapidly increase in around year 2002 (*), making cumulative shipping quantity reach approximately 2.25 million units.
 Shipment quantity in FY2009 is 508 thousand units, and the market size remains at around 500 thousand units likewise in the previous year.

 \checkmark Main manufacturers are the following 12 companies, and there are few imported products sold in the market.

* A "subsidy system" in which the government bears part of the cost to install heat pump water heaters (CO_2 refrigerant) was implemented in FY2002. Since then, thanks to this subsidy system in part, the number of installed units has rapidly increased.

• Main manufacturers of residential products

Corona Corporation Sanden Corporation SANYO Electric Co., Ltd. Daikin Industries, Ltd. Choshu Industry Co., Ltd. CHOFU SEISAKUSHO Co., Ltd. DENSO Corporation TOSHIBA CARRIER Corporation Housetec Inc. Panasonic Corporation Hitachi Appliances, Inc. Mitsubishi Electric Corporation (In Japanese alphabetical order)

5. Shipping Quantity of Heat Pump Water Heaters (2) (Commercial)

Commercial Heat Pump Water Heaters

✓ Shipping quantity of commercial heat pump water heaters in FY2009 is 3.6 thousand units, and its cumulative shipping quantity is 10 thousand plus units. Its market size is small compared with that of residential models, occupying only less than 1% of the heat pump water heater market as a whole. ✓ Main manufacturers are the following companies, and there are few imported

products.

Transition of shipping quantity, Main manufacturers of commercial products commercial (Unit: One thousand units) Showa Manufacturing Co., Ltd. 60 Daikin Industries. Ltd. **DENSO** Corporation 50 **TOSHIBA CARRIER Corporation** 40 Nihon Itomic Co., Ltd. **Panasonic Corporation** 30 Hitachi Appliances, Inc. MAYEKAWA MFG. Co., Ltd. 20 Mitsubishi Electric Corporation (In Japanese alphabetical order)

6. Technology of Heat Pump Water Heaters (1)

Principle of making hot water

Using the "principle of heat pump" which is also employed in air conditioners, heat pump water heaters make hot water through the compression-expansion cycle of refrigerant, store it in a hot water storage tank and supply it.

(1) A heat pump water heater makes its refrigerant to absorb heat from air through an "air heat exchanger" and compresses the refrigerant with a compressor to bring it into a high temperature and high pressure state. (2) Then, the heat of the refrigerant is transferred to water through a "water heat exchanger", and the produced hot water is stored in a hot water storage tank. (3) The refrigerant which lost heat is expanded by an expansion valve to bring it back to a low temperature and low pressure state again in which it can easily absorb heat from air. A heat pump water heater is a mechanism repeating this procedure.

7. Technology of Heat Pump Water Heaters (2)

Toward further energy saving

To realize further energy saving, efficiency of every component is being enhanced. (1) As for technologies of the heat pump side, efficiency improvement of heat exchangers, compressors, etc. is being worked on. (Figure (1) below shows an example of efficiency improvement made to a water heat exchanger.)

(2) As for technologies of the hot water storage unit side, improvement of thermal insulation performance by using vacuum thermal insulation materials, etc. is being worked on. (Figure (2) below shows an example of vacuum thermal insulation material.)

(2)

(1)

(Dimple refrigerant tube)

<Water heat exchanger> Pressure loss of refrigerant is reduced by taking advantage of the shape of refrigerant tubes and water tubes. Meanwhile. heat exchange efficiency is improved by expanding the heat exchange area.

(Vacuum thermal insulation material)

<Vacuum thermal insulation material> Efficiency is improved by adopting vacuum thermal insulation materials whose thermal insulation performance is better than those of conventional glass wool or foamed polystyrene. 8

Methods for Measurement and Calculation of Annual Efficiency of Water Heating's Heat-retention (for Products with a Heat-retention Function)

1. Procedures for measurement and calculation of annual efficiency of water heating's heat-retention

A residential heat pump water heater is composed of a "heat pump unit" and a "hot water storage unit".

Composition of residential heat pump water heater

• Specific procedures for the measurement and calculation of the energy consumption efficiency are as follows.

[Procedure (1)] Calculation of "efficiency of water heating's heat-retention mode" of a system as a whole

- The measurement is performed under the "water heating's heat-retention mode (winter conditions)" considering actual usage conditions.

[Procedure (2)] Calculation of "heat pump unit's single unit efficiency"

* As regards the specifications for cold areas, the measurement is additionally performed under cold area winter's high temperature heating conditions.

[Procedure (3)] Calculation of "annual efficiency of water heating's heat-retention"

- (1) A factor is obtained from the "efficiency of water heating's heat-retention mode" and the "heat pump unit's single unit efficiency" under winter conditions, and the "efficiency of water heating's heat-retention mode" under each outside temperature is calculated based on the factor.
- (2) The "annual heat amount of water heating's heat-retention" is calculated from the number of days when applicable outside temperature has occurred and the in-coming water temperature.
- (3) The "electric energy consumption" is obtained from the "heat amount of water heating's heat-retention mode" and the "efficiency of water heating's heat-retention mode" under each outside temperature, and the "annual electric energy consumption" is calculated from the their total.
- (4) The "annual efficiency of water heating's heat-retention" is calculated from the "annual heat amount of water heating's heat-retention" and the "annual electric energy consumption".

2. Outline of methods for the measurement and calculation of annual efficiency of water heating's heat-retention

Ite	ems	Outline - In case of products with a bath heat-retention function -
		The efficiency of water heating's heat-retention mode is calculated by the following formula.
ole		Efficiency of water heating's heat-retention mode $C_{MW1} = \frac{Q_{MW1}}{P_{MW1} \times 3.6}$
wh		Here:
sa		C_{MW1} : Efficiency of water heating's heat-retention mode
n a		Q_{MW1} : Heat amount of water heating's heat-retention mode (MJ) <- Total of water heating's heat amount and
steı		neat-retention's neat amount of one day
sys		P_{MW1} . Electric energy consumption of water heating's heat-retention mode (kWn) <- Electric energy consumption of any day when operating under water heating's heat retention mode
the		3.6. Eactor for converting kWh to MI
of		
mode"		Water heating's heat amount $Q = \sum_{j=t_{*}}^{t_{e}} \left\{ (T_{m} - T_{i}) \times q_{m} \times \rho \times c_{p} \times t_{m} \right\}$
uo		Here:
enti		Q: Heat amount of each water heating mode (kJ)
rete		j: Classification numbered for each measurement interval
at-	ıla	T _m : Water heating temperature (°C)
í he	rmı	ts: Time when hot water supply starts
ting	n fo:	t _e : Time when hot water supply ends
leat	tior	T _i : Water supply temperature when simultaneously measuring each hot water supply temperature (°C)
er k	ula	<i>ρ</i> : Water density at each hot water supply temperature (kg/L)(from Table A.4)
vate	alcı	c _p : Average specific heat of water 4.1796 (kJ/kg· °C)(constant value)
of v	С	q _m : Flow rate in measurement interval (L/min)
icy i		t _m : Measurement interval (min)
efficien		Heat-retention's heat amount $Q_{\mathbf{k}} = \sum_{j=t_s}^{t_e} \left\{ (T_{ok} - T_{\mathbf{ik}}) \times q_{\mathbf{k}} \times \rho \times c_p \times t_{\mathbf{k}} \right\}$
of "		Here:
ion		Qk: Heat amount of each heat-retention mode (kJ)
lati		j: Classification numbered for each measurement interval
ılcu		T _{oK} : Going-to-bath temperature (°C)
ů		ts: Time when valid water heating's heat amount starts
(1)		t _e : Time when hot water supply ends
ure		T_{ik} : Returning-from-bath temperature when simultaneously measuring going-to-bath temperature (°C)
ced		ρ: Water density at going-to-bath temperature (kg/L) (from Table A.4)
Pro		c_p : Average specific near of water 4.1/96 (KJ/Kg· \sim) (constant value)
-		q_k . Flow rate in measurement interval (L/mm) t_: Measurement interval (min)
		Integration is made when $T_{av} > T_{th}$ condition is met.
		The Bracon to make the trick of the processing the processi

Ite	ems		Outline - In case of products with a bath heat-retention function -											
		Th	e ratio betw	een the effici	ency of wate	er heating's h	neat-retentio	n mode C _{MW}	1 calculated i	n the proced	ure (1) and the			
	г d	en	energy consumption efficiency of water heating's heat-retention mode C_{HMT1} calculated in the procedure (2). The											
	tior	wa	water heating's heat-retention efficiency factor Fund of a heat numn is calculated by the following formula											
	ent t pu		water nearing s near-retention endency factor r _{HMI} of a near pump is calculated by the following formula.											
°	ret lea		$F_{\rm HMI} = \frac{C_{\rm MWI}}{c}$											
tio	at- a h		$C_{\rm HMT1}$											
ten	s he	He	ere:								1 (0)			
-re	ng's ctor	(C _{HMT1} : Energy consumption efficiency of water heating's heat-retention mode \leftarrow From the procedure (2)											
eat	atin fac	(C_{MW1} : Efficiency of water heating's heat-retention mode \leftarrow From the procedure (1)											
s h	he ncy													
ing	ter cie													
eati	Wa effi													
r he														
ate							•		• .					
fw		Nι	umber of day	s when the l	isted averag	e outside nig	ghttime temp	erature has	occurred in	a year.				
y o						1			1					
enc			Temperature	Outside	Number of	Temperature	Outside	Number of	Temperature	Outside	Number of			
îici			category	temperature	days	category	temperature	days	category	temperature	days			
lefi			J	ty °C	dj d	J	ty °C	dj d	J	tj °C	dj d			
ual			1	_10	<u>u</u>	16	5	u 17	31	20	15			
uu	c		2	-10	0	10	6	17	32	20	15			
f "a	tio		2	-9	0	18	7	15	33	22	13			
0 u	ndi		4	-7	0	19	8	15	34	23	14			
ntio	CO		5	-6	0	20	9	13	35	24	11			
ula	ure		6	-5	0	21	10	12	36	25	12			
alc	rat		7	-4	0	22	11	11	37	26	13			
0	ədı		8	-3	0	23	12	12	38	27	14			
e (;)	len		9	-2	0	24	13	10	39	28	15			
lur	.		10	-1	0	25	14	12	40	29	7			
cec			11	0	1	26	15	13	41	30	2			
Pro			12	1	1	27	16	13	42	31	0			
			13	2	5	28	17	14	43	32	0			
			14	3	9	29	18	15	-	-	-			
			15	4	15	30	19	14	То	tal	365			

Ite	ems	Outline - In case of products with a bath heat-retention function -
		 I) From the heat pump unit's single unit efficiency (COP) measured under each condition as described in the procedure (2), the heat pump unit's single unit efficiency (COP) under each outside temperature and each hot water temperature is calculated (Right figure: COP performance line). II) From the water heating's heat-retention efficiency factor F_{HM1} of a heat pump and the heat pump's single unit efficiency under each outside temperature and each hot water temperature, the efficiency of water heating's heat-retention mode C_{M1} (tj) under each
	ıla	outside temperature is calculated (Right -7 2 5.57 16 25 figure: Efficiency performance line of water heating's heat-retention mode). III) The annual heat amount of water heating's heat-retention QMA1 is calculated by multiplying the heat amou of water heating's heat-retention QM1 (tj) under outside temperature tj by the number of days when the outsi temperature was tj, then by totaling them. $Q_{MA1} = \sum_{j=1}^{43} \{Q_{M1}(tj) \cdot dj\}$
	Calculation formu	IV) The electric energy consumption P_{M1} (tj) under outside temperature tj is calculated by dividing the heat amount of water heating's heat-retention Q_{M1} (tj) under the outside temperature tj by the efficiency of water heating's heat-retention mode C_{M1} (tj), and the annual electric energy consumption P_{MA1} of water heating's heat-retention mode is calculated by multiplying the electric energy consumption calculated above by the number of days when outside temperature was tj, then by totaling them. $P_{MA1} = \sum_{j=1}^{43} \left\{ \frac{Q_{M1}(tj)}{C_{M1}(tj) \times 3.6} \times dj \right\}$
		Outside temperature tj (°C)V) The annual efficiency of water heating's heat-retention C_{MA1} is calculated by the following formula. $C_{MA1} = \frac{Q_{MA1}}{P_{MA1} \times 3.6}$ Here: CMA1: Annual efficiency of water heating's heat-retention when performing water heating's heat-retention und water heating's heat-retention modeQMA1: Annual heat amount of water heating's heat-retention mode (MJ)PMA1: Annual electric energy consumption of water heating's heat-retention mode (kWh)3.6: Factor for converting kWh to MJ
Others	For households with only a few members	To be evaluated by changing the load of water heating's heat-retention to the water heating's heat-retention mo for households with only a few members (stipulation). * A mode integrating the water heating's heat-retention mode for a few people and the actions for continuing sar use is created (Attachment 3).

he annual eff utside temper ficiency of wa Temperature Category <i>j</i>	ficiency of w rature, wate iter heating's Outside temperature	vater hea r supply s heat-ret Number	ting's heat temperatu ention is in	t-rete ure an ndica	ntion is cal nd number ted too for r	culated by r of days witl eference.	eplacing the 1 the followi	foregoing n ng numbers	umbers of . The ann								
Itside temper ficiency of wa Temperature Category <i>j</i>	cature, wate ater heating's Outside temperature	r supply s heat-ret Number	temperatu ention is in	ure an ndica	nd number ted too for r	of days witl eference.	ı the followi	ng numbers	. The ann								
ficiency of wa	ter heating's Outside temperature	s heat-ret	ention is in	ndica	ted too for r	eference.		-									
Temperature Category j	Outside temperature	Number		щ													
Temperature Category j	Outside temperature	Number		τι													
Temperature Category j	Outside temperature	Number	II Area (Morioka)														
Category j	temperature		of Temper	ature	Outside	Number of	Temperature	Outside	Number of								
<i>j</i>		days	Categ	ory	temperature	days	Category	temperature	days								
1	tj	dj	j		tj	dj	j	tj	dj								
1	°C	d			°C	d		°C	d								
1	-10	0	16		5	10	31	20	11								
2	-9	1	17		6	11	32	21	9								
3	-8	2	18		7	11	33	22	9								
4	-7	3	19		8	9	34	23	9								
5	-6	5	20		9	10	35	24	6								
6 ~	-5	8	21		10	9	36	25	4								
7	-4	11	22		11	10	37	26	1								
8	-3	13	23		12	11	38	27	0								
9	-2	10	24		13	11	39	28	0								
10	-1	20	20		14	12	40	29	0								
11	1	16	20		15	15	41	31	0								
12	2	13	28		10	15	42	32	0								
14	2	11	29		18	13	-	-	-								
15	4	9	30		19	13	То	tal	365								
To calculate the yearly efficiency of water heating's heat-retention in the specifications for cold areas, heat j unit's single unit efficiency under the following condition is actually measured.									, heat pump								
						Inlet air tem	perature	Water temp	erature								
	Condition		Setting of o	out-go	ing hot	D h.ulk	Wet health	Ta coming									
			water te	mpera	ture te	emperature	temperature	tempera	water ture								
Cold area winter high temperature heating condition			Cold area hig heating-up	gh tem temp	nperature erature	-7	-8	5									
D	4 5 6 7 8 9 10 11 12 13 14 15 calculate the it's single un Cold temperat	4 -7 5 -6 6 -5 7 -4 8 -3 9 -2 10 -1 11 0 12 1 13 2 14 3 15 4 calculate the yearly efficiency Condition Condition Cold area winter h temperature heating colspan="2">Cold area winter h	4 -7 3 5 -6 5 6 -5 8 7 -4 11 8 -3 13 9 -2 15 10 -1 16 11 0 20 12 1 16 13 2 13 14 3 11 15 4 9 calculate the yearly efficiency of wit's single unit efficiency under th Condition Condition Cold area winter high temperature heating condition Condition	4 -7 3 19 5 -6 5 20 6 -5 8 21 7 -4 11 22 8 -3 13 23 9 -2 15 24 10 -1 16 25 11 0 20 26 12 1 16 27 13 2 13 28 14 3 11 29 15 4 9 30 calculate the yearly efficiency of water heat 9 30 calculate the yearly efficiency under the following Setting of water te Condition Setting of water te Setting of water te Cold area winter high Cold area high heating-up	4 -7 3 13 5 -6 5 20 6 -5 8 21 7 -4 11 22 8 -3 13 23 9 -2 15 24 10 -1 16 25 11 0 20 26 12 1 16 27 13 2 13 28 14 3 11 29 15 4 9 30	4 -7 3 19 6 5 -6 5 20 9 6 -5 8 21 10 7 -4 11 22 11 8 -3 13 23 12 9 -2 15 24 13 10 -1 16 25 14 11 0 20 26 15 12 1 16 27 16 13 2 13 28 17 14 3 11 29 18 15 4 9 30 19 calculate the yearly efficiency of water heating's heat-retenti it's single unit efficiency under the following condition is actu Condition Setting of out-going hot water temperature temperature heating condition Cold area high temperature heating-up temperature temperature heating condition Cold area high temperature	4 -7 3 13 6 9 5 -6 5 20 9 10 6 -5 8 21 10 9 7 -4 11 22 11 10 8 -3 13 23 12 11 9 -2 15 24 13 11 10 -1 16 25 14 12 11 0 20 26 15 13 12 1 16 27 16 15 13 2 13 28 17 15 14 3 11 29 18 13 15 4 9 30 19 13 calculate the yearly efficiency of water heating's heat-retention in the speciatit's single unit efficiency under the following condition is actually measure Inlet air tem Condition Setting of out-going hot water temperature Dry bulb temperature temp	4 -7 3 19 6 9 34 5 -6 5 20 9 10 35 6 -5 8 21 10 9 36 7 -4 11 22 11 10 37 8 -3 13 23 12 11 38 9 -2 15 24 13 11 39 10 -1 16 25 14 12 40 11 0 20 26 15 13 41 12 1 16 27 16 15 42 13 2 13 28 17 15 43 14 3 11 29 18 13 - 15 4 9 30 19 13 To calculate the yearly efficiency of water heating's heat-retention in the specifications for water temperature Inlet air temperatu	4 -7 3 19 6 9 34 23 5 -6 5 20 9 10 35 24 6 -5 8 21 10 9 36 25 7 -4 11 22 11 10 37 26 8 -3 13 23 12 11 38 27 9 -2 15 24 13 11 39 28 10 -1 16 25 14 12 40 29 11 0 20 26 15 13 41 30 12 1 16 27 16 15 42 31 13 2 13 28 17 15 43 32 14 3 11 29 18 13 - - 15 4 9 30 19 13 Total Condition Setting of out-going hot water temperature								

_

_

50.00

2.50

0.83

5.00

0.83

455.74

Water heating and heat-retention mode Heat quantities are those in the winter condition. Start Heat quantity of hot Heat quantity of Flow rate Hot water supply No. Usage time water heating MJ heat-retention MJ L/min amount 1 Lavatory 7:00:00 1.286 5 10.00 2 7:02:30 0.107 5 0.83 Lavatory 3 7:03:10 0.107 5 0.83 Lavatory _ 4 Lavatory 7:04:20 0.107 5 0.83 _ 5 7:05:00 0.107 5 0.83 Lavatory _ 6 0.643 5 5.00 Kitchen 8:15:00 _ 7 Kitchen 8:16:30 0.107 _ 5 0.83 8 Kitchen 8:17:10 0.107 5 0.83 _ 9 Kitchen 8:27:20 3.214 _ 5 25.00 10 Kitchen 8:34:20 0.321 5 2.50 5 11 13:00:00 0.643 5.00 Kitchen 12 Kitchen 13:01:30 0.107 5 0.83 13 Kitchen 13:02:10 0.107 5 0.83 14 13:07:20 1.286 5 10.00 Kitchen _ 15 Kitchen 13:10:20 0.321 _ 5 2.50 16 Kitchen 18:15:00 0.643 5 5.00 _ 0.107 5 17 Kitchen 18:16:30 0.83 _ 18 Kitchen 18:18:40 0.643 5 5.00 _ 19 0.643 5 5.00 Kitchen 18:24:40 _ 20 Kitchen 18:26:10 0.107 5 0.83 _ 21 Kitchen 18:26:50 0.107 _ 5 0.83 5 22 Kitchen 18:27:30 0.107 _ 0.83 23 Kitchen 18:32:40 0.321 5 2.50 _ 24 Kitchen 18:33:40 0.107 _ 5 0.83 0.107 0.83 25 Kitchen 18:34:20 5 _ 23.143 10-15 180.00 26 Bath 19:40:00 _ 27 Kitchen 20:00:00 1.286 5 10.00 28 20:02:30 0.321 5 Kitchen 2.50 _ 29 Shower 20:08:00 2.571 10 20.00 _ 30 Kitchen 20:12:00 0.321 5 2.50 _ 5 31 Kitchen 20:13:00 0.107 0.83 _ 32 Kitchen 20:18:10 0.321 5 2.50 _ 33 Kitchen 20:19:10 0.107 _ 5 0.83 0.107 0.83 34 Kitchen 20:19:50 5 1.020 35 Heat-retention 20:27:00 36 Shower 20:30:00 6.428 10 50.00 37 Kitchen 20:36:00 0.107 5 0.83 _ 38 Kitchen 20:36:40 0.107 _ 5 0.83 39 Kitchen 20:37:20 0.107 _ 5 0.83 20:38:00 0.107 5 0.83 40 Kitchen _ 20:57:00 41 Heat-retention 0.530 _ 42 21:27:00 0.530 Heat-retention _ _ 21:57:00 0.530 43 Heat-retention _ Lavatory 1.286 5 10.00 44 22:00:00 45 Lavatory 22:02:30 0.107 5 0.83 46 Lavatory 22:03:10 0.107 5 0.83 _ 0.107 5 0.83 47 Lavatory 22:03:50 _ 2.571 10 20.00 48 Shower 22:14:00 49 22:16:30 0.107 5 0.83 Lavatory _ 0.107 5 50 Lavatory 22:17:10 0.83 1.020 51 Heat-retention 22:27:00 _ _

52

53

54

55

56

Shower

Lavatory

Lavatory

Lavatory

Lavatory

Total

22:32:20

22:39:20

22:40:50

22:43:00

22:45:00

6.428

0.321

0.107

0.643

0.107

58.594

_

_

_

4.120

10

5

5

5

5

_

Water heating and heat-retention mode

(when operations for the same intended usage are summarized)

Heat quantities are those in the winter condition.

No.	Usage	Start time	Heat quantity of hot	Heat quantity of	Flow rate	Hot water supply
- 1	T /	7 00 00	water neating wij	neat-retention MJ	L/IIIII	
1	Lavatory	7:00:00	1./13	_	5	13.32
2	Kitchen	8:25:00	4.392	-	5	34.16
3	Kitchen	13:05:00	2.463	-	5	19.16
4	Kitchen	18:25:00	2.890	-	5	22.48
5	Bath	19:40:00	23.143	-	10-15	180.00
6	Kitchen	20:01:00	1.607	-	5	12.50
7	Shower	20:08:00	2.571	-	10	20.00
8	Kitchen	20:16:00	0.963	-	5	7.49
9	Heat-retention	20:27:00	-	1.020	-	-
10	Shower	20:30:00	6.428	-	10	50.00
11	Kitchen	20:37:00	0.427	-	5	3.32
12	Heat-retention	20:57:00	-	1.020	-	-
13	Heat-retention	21:27:00	-	0.530	-	-
14	Heat-retention	21:57:00	_	0.530	_	-
15	Lavatory	22:02:00	1.606	-	5	12.49
16	Shower	22:14:00	2.571	-	10	20.00
17	Lavatory	22:17:00 0.213		-	5	1.66
18	Heat-retention	22:27:00	-	1.020	-	-
19	Shower	22:32:20	6.428	-	10	50.00
20	Lavatory	22:43:00	1.178	-	5	9.16
	Total		58.594	4.120	_	455.74

Attachment 3

Water heating and heat-retention mode for household with fewer family members

Heat quantities are those in the winter condition.

No	Usage	Start	Heat quantity of hot	Heat quantity of	Flow rate	Hot water supply
110.	Osuge	time	water heating MJ	heat-retention MJ	L/min	amount L
1	Lavatory	7:00:00	0.643	-	5	5.00
2	Lavatory	7:02:30	0.107	-	5	0.83
3	Lavatory	7:03:10	0.107	-	5	0.83
4	Kitchen	8:15:00	0.129	-	5	1.00
5	Kitchen	8:16:30	0.107	-	5	0.83
6	Kitchen	8:17:10	0.107	-	5	0.83
7	Kitchen	8:27:20	1.286	-	5	10.00
8	Kitchen	8:34:20	0.129	-	5	1.00
9	Kitchen	13:00:00	0.129	-	5	1.00
10	Kitchen	13:01:30	0.107	-	5	0.83
11	Kitchen	13:02:10	0.107	-	5	0.83
12	Kitchen	13:07:20	0.514	-	5	4.00
13	Kitchen	13:10:20	0.129	-	5	1.00
14	Kitchen	18:15:00	0.193	-	5	1.50
15	Kitchen	18:16:30	0.107	-	5	0.83
16	Kitchen	18:18:40	0.257	-	5	2.00
17	Kitchen	18:24:40	0.172	-	5	1.34
18	Kitchen	18:26:50	0.107	-	5	0.83
19	Kitchen	18:27:30	0.107	-	5	0.83
20	Kitchen	18:32:40	0.214	-	5	1.66
21	Kitchen	20:00:00	0.514	-	5	4.00
22	Kitchen	20:02:30	0.129	-	5	1.00
23	Kitchen	20:12:00	0.171	-	5	1.33
24	Kitchen	20:18:10	0.214	-	5	1.66
25	Kitchen	20:37:00	0.171	-	5	1.33
26	Bath	20:40:00	19.285	-	10-15	150.00
27	Shower	21:08:00	2.571	-	10	20.00
28	Heat-retention	21:27:00	-	0.850	-	-
29	Heat-retention	21:57:00	-	0.442	-	-
30	Heat-retention	22:27:00	-	0.442	-	-
31	Shower	22:32:20	6.428	-	10	50.00
32	Lavatory	22:39:20	0.910	_	5	7.08
33	Lavatory	22:42:00	0.214	-	5	1.67
34	Lavatory	22:44:30	0.375	-	5	2.92
	Total		35.737	1.734	-	277.96

Water heating and heat-retention mode for household with fewer family members (when operations for the same intended usage are summarized) Heat quantities are those in the winter condition.

				Houe quain	intros are thos	
No.	Usage	Start time	Heat quantity of hot water heating MJ	Heat quantity of heat-retention MJ	Flow rate L/min	Hot water supply amount L
1	Lavatory	7:00:00	0.856	_	5	6.66
2	Kitchen	8:25:00	1.757	-	5	13.66
3	Kitchen	13:05:00	0.985	_	5	7.66
4	Kitchen	18:25:00	1.156	-	5	8.99
5	Kitchen	20:01:00	0.643	-	5	5.00
6	Kitchen	20:16:00	0.385	-	5	3 00
7	Kitchen	20:37:00	0.171	-	5	1.33
8	Bath	20:40:00	19.285	-	10-15	150.00
9	Shower	21:08:00	2.571	-	10	20.00
10	Heat-retention	21:27:00	-	0.850	-	-
11	Heat-retention	21:57:00	-	0.442	-	-
12	Heat-retention	22:27:00	-	0.442	-	-
13	Shower	22:32:20	6.428	-	10	50.00
14	Lavatory	22:43:00	1.498	_	5	11.66
	Total		35.737	1.734	-	277.96

Heat Pump Water Heater Evaluation Standards Subcommittee, Energy Efficiency Standards Subcommittee of the Advisory Committee for Natural Resources and Energy Meeting History

First Subcommittee Meeting (July 20, 2010)

- Disclosure of the Heat Pump Water Heater Evaluation Standards Subcommittee
- Current status of heat pump water heaters
- Scope of heat pump water heaters
- Energy consumption efficiency of heat pump water heaters and its measurement method

Second Subcommittee Meeting (March 28, 2012)

- Classification of heat pump water heaters
- Target fiscal year and target standard values for heat pump water heaters

Third Subcommittee Meeting (April 17, 2012)

- Interim report on heat pump water heaters

Heat Pump Water Heater Evaluation Standards Subcommittee, Energy Efficiency Standards Subcommittee of the Advisory Committee for Natural Resources and Energy List of Members

Chairman	Motoyasu Kamata	Professor Emeritus, The University of Tokyo
Members	Yukie Iino	Researcher, Consumer Lives Research Center, Japan Consumer's Association
	Tadayoshi Tanaka	General Manager, Technology Planning and Management Department, The Energy Conservation Center, Japan (Replaced by committee member Inoue from the second meeting)
	Mamoru Inoue	General Manager, Technology Planning and Management Department, The Energy Conservation Center, Japan (Joined from the second meeting)
	Shinya Okada	Deputy Chairman, Heat Pump Water Heater Committee, The Japan Refrigeration and Air Conditioning Industry Association
	Kiyoshi Saito	Professor, Faculty of Science and Engineering, Waseda University
	Masako Sugimoto	Director, Nippon Association of Consumer Specialists
	Hirofumi Daiguji	Associate Professor, Graduate School of Frontier Sciences, The University of Tokyo
	Koichi Takubo	Manager, Business Department, The Federation of Electric Power Companies of Japan
	Chiharu Murakoshi	Vice President, Jyukankyo Research Institute Inc.

Status Quo of Heat Pump Water Heaters

July 22, 2010

Ministry of Economy, Trade and Industry Commerce and Information Policy Bureau Information and Communication Electronics Division

1. What is Heat Pump Water Heater?

Heat pump water heaters

 A collective name for water heaters using the principle of heat pump as in the case of air conditioners. They are considered as products excellent in energy saving performance. There are residential heat pump water heaters and commercial heat pump water heaters.

* The name "EcoCute" is a registered trade name of the Kansai Electric Power Co., Inc., which is used by many companies with the permission of said company.

Features

✓ The heat pump unit ((1) in the right figure) efficiently makes a large amount of hot water, and then it is stored (storage temperature at 65 to 90) in the hot water storage unit ((2) in the right figure). Hot water is served from the storage unit when it is used at baths, lavatories, kitchens, etc.

✓ Residential heat pump water heaters generally make hot water using less expensive nighttime electricity, so their electric bill is relatively low.

Refrigerant used

✓ Heat pump water heaters using HFC (fluorocarbon) as refrigerant are conventionally available in the market. However, those using carbon dioxide (CO_2) as refrigerant were developed in 2001, and the demands, especially for residential models, has been expanding. (Some commercial models are still using HFC.)

2. Types of Heat Pump Water Heaters (1)

Residential heat pump water heaters

✓ Residential heat pump water heaters are classified into several types according to their tank shape, capacity, function, etc. The capacity ranges from 370 to 460 L in case of products for standard households (4 family members) and from 150 to 200 L in case of compact tanks (for a single, 2 family members, etc.).

1. Types by tank shape and capacity

x> <Thin tank>

<Compact tank>

<All-in-one type>

2. Types by function

a. Full-auto type

Those equipped with functions of "automatic hot water filling", "hot water adding", "automatic heat-retention" and "reheating" for bath.

b. Auto (semi-auto) type

Those equipped with functions of "automatic hot water filling" and "hot water adding" for bath.

c. Hot water supply only type

Those designed only for hot water supply, so they fill a bath with hot water through a faucet.

d. Multifunction type

Those equipped with a floor heating function in addition to a hot water supply function for bath, lavatory, kitchen, etc.

3. Types of Heat Pump Water Heaters (2)

Commercial heat pump water heaters Commercial heat pump water heaters are used in commercial facilities such as buildings, hotels, etc. Following types are available according to their scales and hot water amount used.

<For small scale buildings>

- ✓ Clinics, inns, small welfare facilities, etc.
- ✓ Restaurants, shops, etc.

<For large scale buildings>

- ✓ Hospitals, hotels, large welfare facilities
- ✓ Sports spa facilities, meal supply facilities, etc.

4. Shipping Quantity of Heat Pump Water Heaters (1) (Residential)

Residential heat pump water heaters

✓ Shipping quantity of residential heat pump water heaters started to rapidly increase in around year 2002 (*), making cumulative shipping quantity reach approximately 2.25 million units. Shipment quantity in FY2009 is 508 thousand units, and the market size remains at around 500 thousand units likewise in the previous year.

 \checkmark Main manufacturers are the following 12 companies, and there are few imported products sold in the market.

* A "subsidy system" in which the government bears part of the cost to install heat pump water heaters (CO_2 refrigerant) was implemented in FY2002. Since then, thanks to this subsidy system in part, the number of installed units has rapidly increased.

• Main manufacturers of residential products

Corona Corporation Sanden Corporation SANYO Electric Co., Ltd. Daikin Industries, Ltd. Choshu Industry Co., Ltd. CHOFU SEISAKUSHO Co., Ltd. DENSO Corporation TOSHIBA CARRIER Corporation Housetec Inc. Panasonic Corporation Hitachi Appliances, Inc. Mitsubishi Electric Corporation (In Japanese alphabetical order)

5. Shipping Quantity of Heat Pump Water Heaters (2) (Commercial)

Commercial Heat Pump Water Heaters

✓ Shipping quantity of commercial heat pump water heaters in FY2009 is 3.6 thousand units, and its cumulative shipping quantity is 10 thousand plus units. Its market size is small compared with that of residential models, occupying only less than 1% of the heat pump water heater market as a whole. ✓ Main manufacturers are the following companies, and there are few imported

products.

Transition of shipping quantity, Main manufacturers of commercial products commercial (Unit: One thousand units) Showa Manufacturing Co., Ltd. 60 Daikin Industries. Ltd. **DENSO** Corporation 50 **TOSHIBA CARRIER Corporation** 40 Nihon Itomic Co., Ltd. **Panasonic Corporation** 30 Hitachi Appliances, Inc. MAYEKAWA MFG. Co., Ltd. 20 Mitsubishi Electric Corporation (In Japanese alphabetical order)

6. Technology of Heat Pump Water Heaters (1)

Principle of making hot water

Using the "principle of heat pump" which is also employed in air conditioners, heat pump water heaters make hot water through the compression-expansion cycle of refrigerant, store it in a hot water storage tank and supply it.

(1) A heat pump water heater makes its refrigerant to absorb heat from air through an "air heat exchanger" and compresses the refrigerant with a compressor to bring it into a high temperature and high pressure state. (2) Then, the heat of the refrigerant is transferred to water through a "water heat exchanger", and the produced hot water is stored in a hot water storage tank. (3) The refrigerant which lost heat is expanded by an expansion valve to bring it back to a low temperature and low pressure state again in which it can easily absorb heat from air. A heat pump water heater is a mechanism repeating this procedure.

7. Technology of Heat Pump Water Heaters (2)

Toward further energy saving

To realize further energy saving, efficiency of every component is being enhanced. (1) As for technologies of the heat pump side, efficiency improvement of heat exchangers, compressors, etc. is being worked on. (Figure (1) below shows an example of efficiency improvement made to a water heat exchanger.)

(2) As for technologies of the hot water storage unit side, improvement of thermal insulation performance by using vacuum thermal insulation materials, etc. is being worked on. (Figure (2) below shows an example of vacuum thermal insulation material.)

(2)

(1)

(Dimple refrigerant tube)

(Corrugated water tube)

<Water heat exchanger> Pressure loss of refrigerant is reduced by taking advantage of the shape of refrigerant tubes and water tubes. Meanwhile. heat exchange efficiency is improved by expanding the heat exchange area.

(Vacuum thermal insulation material)

<Vacuum thermal insulation material> Efficiency is improved by adopting vacuum thermal insulation materials whose thermal insulation performance is better than those of conventional glass wool or foamed polystyrene. 8